Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 56 , ISSUE 1 (April 2017) > List of articles


Joanna Jadwiga Klim / Renata Godlewska *

Keywords : antygeny rekombinowane, immunomodulacja, pęcherzyki zewnątrzbłonowe (OMVs – outer membrane vesicles), szcze- pionki nowej generacji, immunomodulation, new generation vaccines, outer membrane vesicles, recombinant antigens

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 56, Issue 1, Pages 43-55, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 21-May-2019



Outer membrane vesicles (OMVs) are extracellular structures produced by most gram‑negative bacteria, including pathogens of humans and animals. OMVs play an important role in the physiology of microorganisms and are an integral part of many biological processes. Following the discovery that they are able to transport many biomolecules, also these which have the ability to interact with the immune system, their potential use as non‑replicating vaccines has become an important aspect of immunotherapeutic researches. These nano-sized elements exhibit remarkable potential for immunomodulation of immune response, thanks to the ability to deliver naturally or artificially incorporated antigens within their structure. First vaccine based on outer membrane vesicles was developed almost 30 years ago against Neisseria meningitidis serogroup B. This review presents some basic information on biogenesis and functions of OMVs. It also provides examples of pathogens, whose OMVs (in natural or modified form) have been used in the development of immunogenic vaccines against the organisms from which the vesicles had been obtained. OMVs are proving to be more versatile than first conceived and may become important part of biotechnology research, not limited to medical applications.

Content not available PDF Share



1. Acevedo R., Fernández S., Zayas C., Acosta A., Sarmiento M.E., Ferro V.A.: Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, DOI: 10.3389/fimmu.2014.00121 (2014)
2. Bai X., Findlow J., Borrow R.: Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin. Biol. Ther. 11, 969–985 (2011)
3. Baker J.L., Chen L., Rosenthal J.A., Putnam D., DeLisa M.P.: Microbial biosynthesis of designer outer membrane vesicles. Curr. Opin. Biotechnol. 29, 76–84 (2014)
4. Bartolini E., Ianni E., Frigimelica E., Petracca R.: Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles. 2, DOI: 10.3402/jev.v2i0.20181 (2013)
5. Bauman S.J., Kuehn M.J.: purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8, 2400–2408 (2006)
6. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L., Heipieper H.: Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78, 6217–6224 (2012)
7. Beveridge T.J.: Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999)
8. Bomberger J.M., MacEachran D.P., Coutermarsh B.A., Ye S., O’Toole G.A., Stanton B.A.: Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 5, DOI: 10.1371/journal.ppat.1000382 (2009)
9. Brudal E., Lampe E., Reubsaet L., Roos N., Hegna I., Thrane I., Koppang E., Winther-Larsen H.C.: Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 42, 50–57 (2015)
10. Brudeseth B.E., Wiulsrød R., Fredriksen B.N., Lindmo K., Løkling K.E., Bordevik M.: Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35, 1759–1768 (2013)
11. Chatterjee S. N., Chaudhuri K.: Lipopolysaccharides of Vibrio cholerae. Physical and chemical characterization. Biochim. Biophys. Acta, 1639, 65–79 (2003)
12. Clausen T., Southan C., Ehrmann M.: The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell. 10, 443–455 (2002)
13. Collins B.S.: Gram-negative outer membrane vesicles in vaccine development. Discov. Med. 12, 7–15 (2011)
14. Daczkowska-Kozon E.: Kampylobakterioza – możliwe źródła infekcji. Folia Univ. Agric. Stetin. Scientia Alimentaria, 238, 21–28 (2004)
15. De S.N.: Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature, 183, 1533–1534 (1959)
16. Deatherage B.L., Lara J.C., Bergsbaken T., Rassoulian Barrett S.L., Lara S., Cookson B.T.: Biogenesis of bacterial membrane vesicles. Mol. Microbiol. 72, 1395–1407 (2009)
17. Delbos V., Lemée L., Bénichou J., Berthelot G., Deghmane A.E., Leroy J.P., Houivet E., Hong E., Taha M.K., Caron F.: Impact of MenBvac, an outer membrane vesicle (OMV) vaccine, on the meningococcal carriage. Vaccine, 31, 4416–4420 (2013)
18. Ellen A.F., Albers S.V., Huibers W., Pitcher A., Hobel C.F., Schwarz H., Folea M., Schouten S., Boekema E.J., Poolman B.: Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles, 13, 67–79 (2009)
19. Elmi A., Dorrell N. i wsp.: Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect. Immun. 80, 4089–4098 (2012)
20. Fernández S., Fajardo E.M., Mandiarote A., Año G., Padrón M.A., Acosta M.: A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunol. 14, DOI: 10.1186/1471-2172-14-S1-S8 (2013)
21. Finco O., Frigimelica E., Buricchi F., Petracca R., Galli G.: Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc. Natl. Acad. Sci. USA, 108, 9969–9974 (2011)
22. Finne J., Leinonen M., Makela P.H.: Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet, 2, 355–357 (1983)
23. Furuta N., Tsuda K., Omori H., Yoshimori T., Yoshimura F., Amano A.: Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. Infect. Immun. 77, 4187–4196 (2009)
24. Główny Inspektorat Sanitarny: Stan sanitarny kraju w roku 2014, (06.09.2016)
25. Gurung M., Moon D.C., Choi C.W., Lee J.H., Bae Y.C., Kim J., Lee Y.C., Seol S.Y., Cho D.T., Kim S.I.: Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PloS One, 6, DOI: 10.1371/journal.pone.0027958 (2011)
26. Helms M., Simonsen J., Olsen K.E., Mølbak K.: Adverse health events associated with antimicrobial drug resistance in Campylobacter species: a registry-based cohort study. J. Infect. Dis. 191, 1050–1055 (2005)
27. Holst J.D., Martin R., Campa C., Oster P., O’Hallahan J., Rosenqvist E.: Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine, 27, DOI: 10.1016/j.vaccine.2009.04.071 (2009)
28. Huang W., Yao Y., Long Q., Yang X., Sun W.: Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS One, 9, DOI: 10.1371/journal.pone.0100727 (2014)
29. Huntley J.F., Conley P.G., Hagman K.E., Norgard M.V.: Characterization of Francisella tularensis outer mambrane proteins. J. Bacteriol. 189, 561–574 (2007)
30. Jagusztyn-Krynicka E.K., Łaniewski P., Wyszyńska A.: Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert. Rev. Vaccines, 8, 625–645 (2009)
31. Jang K.S., Sweredoski M.J., Graham R.L., Hess S., Clemons W.M.: Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J. Proteomics, 98, 90–98 (2014)
32. Jun S.H., Lee J.H., Kim B.R., Kim S.I., Park T.I., Lee J.C., Lee Y.C.: Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins. PLoS One, 8, DOI: 10.1371/journal.pone.0071751 (2013)
33. Kaaijk P., van Straaten I., van de Waterbeemd B., Boot E.P., Levels L.M., van Dijken H.H., van den Dobbelsteen G.P.: Preclinical safety and immunogenicity evaluation of a nona-valent PorA native outer membrane vesicle vaccine against serogroup B meningococcal disease. Vaccine, 31, 1065–1071 (2013)
34. Kadurugamuwa J.L., Beveridge T.J.: Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other Gram-negative bacteria. Microbiology, 145, 2051–2060 (1999)
35. Kadurugamuwa J.L., Beveridge, T.J.: Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177, 3998–4008 (1995)
36. Kahn M.E., Maul G., Goodgal S.H.: Possible mechanism for donor DNA binding and transport in Haemophilus. Proc. Natl. Acad. Sci. USA, 79, 6370–6374 (1982)
37. Kitagawa R., Takaya A., Ohya M., Mizunoe Y., Takade A., Yoshida S., Isogai E., Yamamoto T.: Biogenesis of Salmonella enterica serovar Typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656 (2010)
38. Klose K.: Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 29, 81–88 (2001)
39. Kłapeć T., Cholewa A.: Tularemia – wciąż groźna zoonoza. Medycyna Ogólna i Nauki o Zdrowiu, 17, 155–160 (2011)
40. Knox K.W., Vesk M., Work E.: Relation between excreted lipopolysaccharide complexesand surface structures of a lysine limited culture of Escherichia coli. J. Bacteriol. 92, 1206–1217 (1966)
41. Kulp A., Kuehn M.J.: Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010)
42. Lee E.Y., Bang J.Y., Park G.W., Choi D.S., Kang J.S.: Global proteomic profiling of native outermembrane vesicles derived from Escherichia coli. Proteomics, 7, 3143–3153 (2007)
43. Locht C.: A common vaccination strategy to solve unsolved problems of tuberculosis and pertussis? Microbes Infect. 10, 1051–1056 (2008)
44. Manning A.J., Kuehn M.J.: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, DOI: 10.1186/1471-2180-11-258 (2011)
45. Manning A.J., Kuehn M.J.: Functional advantages conferred by extracellular prokaryotic membrane vesicles. J. Mol. Microbiol. Biotechnol. 23, 131–141 (2013)
46. Mashburn L.M., Whiteley M.: Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437, 422–425 (2005)
47. McBroom A.J., Kuehn M.J.: Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558 (2007)
48. Mitra S., Chakrabarti M.K., Koley H.: Multi-serotype outer membrane vesicles of Shigellae confer passive protection to the neonatal mice against shigellosis. Vaccine, 31, 3163–3173 (2013)
49. Nieves W., Asakrah S., Qazi O., Brown K.A., Kurtz J.: A naturally derived outer membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine, 29, 8381–8389 (2011)
50. Nieves W., Petersen H., Judy B.M., Blumentritt C.A., Russell-Lodrigue K., Roy C.J., Torres A.G., Morici L.A.: A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 21, 747–754 (2014)
51. Norheim G., Tunheim G., Naess L.M., Bolstad K., Fjeldheim A.K., Garcia L.: A trivalent outer membrane vesicle (OMV) vaccine against serogroup A, W-135 and X meningococcal disease. XVIIIth International Pathogenic Neisseria Conference. Würzburg: Conventus Congress Management & Marketing GmbH (2012)
52. Panatto D., Amicizia D., Lai P.L., Cristina M.L., Domnich A., Gasparini R.: New versus old meningococcal Group B vaccines: How the new ones may benefit infants & toddlers. Indian J. Med. Res. 138, 835–846 (2013)
53. Pawlikowska M., Deptuła W.: Swoista odporność humoralna a chlamydie i chlamydofile. Post. Hig. Med. Dosw. 15, 505–511
54. Perez J.L., Acevedo R., Callico A., Fernandez Y., Cedre B., Ano G.: A proteoliposome based formulation administered by the nasal route produces vibriocidal antibodies against El Tor Ogawa Vibrio cholerae O1 in BALB/c mice. Vaccine, 27, 205–212 (2009)
55. Pizza M., Scarlato V., Masignani V.: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 287, 1816–1820 (2000)
56. Rachel R., Wyschkony I., Riehl S., Huber H.: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea, 1, 9–18 (2002)
57. Ram P.K., Crump J.A., Gupta S.K., Miller M.A., Mintz E.D.: Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol. Infect. 136, 577–603 (2008)
58. Renelli M., Matias V., Lo R.Y., Beveridge T.J.: DNA containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 150, 2161–2169 (2004)
59. Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A.: Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc. Natl. Acad. Sci. USA, 107, 19002–19007 (2010)
60. Rosenthal J.A., Chen L., Baker J.L., Putnam D., DeLisa M.P.: Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. Curr. Opin. Biotechnol. 28, 51–8 (2014)
61. Rupali J., Danziger L.H.: Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother. 38, 1449–1459 (2004)
62. Sack D.A., Sack R.B., Chaignat C.L.: Getting serious about cholera. N. Engl. J. Med. 355, 649–651 (2006)
63. Schaar V., Nordstrom T., Morgelin M., Riesbeck K.: Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob. Agents Chemother. 55, 3845–3853 (2011)
64. Schild S., Nelson E.J., Camilli A.: Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect. Immun. 76, 4554–4563 (2008)
65. Schooling S.R., Hubley A., Beveridge T.J.: Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191, 4097–4102 (2009)
66. Segal S., Pollard A.J.: Vaccines against bacterial meningitis. Br. Med. Bull. 72, 65–81 (2005)
67. Serruto D., Bottomley M.J., Ram S.: The new multicomponent vaccine against meningococcal serogroup B, Bexsero®: immunological, functional and structural characterization of the antigens. Vaccine, 30, 87–97 (2012)
68. Sierra G., Campa H.C., Varcacel N.M., Izquierdo P.L., Sotolongo P.F., Garcia L.: Vaccine against group B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann. 14, 195–210 (1991)
69. Silva E.B., Dow S.W.: Development of Burkholderia mallei and Pseudomallei vaccines. Front. Cell. Infect. Microbiol. 3, DOI: 10.3389/fcimb.2013.00010 (2013)
70. Silva J., Leite D., Fernandes M.: Campylobacter spp. as a foodborne pathogen: A Review. Front. Microbiol. 2, DOI: 10.3389/fmicb.2011.00200 (2011)
71. Sinha R., Koley H., Nag D., Mitra S., Mukhopadhyay A.K., Chattopadhyay B.: Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models. Microbes Infect. 17, 215–227 (2015)
72. Sinha S., Langford P., Kroll J.: Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology, 150, 2993–3000 (2004)
73. Tan L.K., Carlone G.M., Borrow R.: Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med. 362, 1511–1520 (2010)
74. Tribble D.R., Baqar S., Carmolli M.P., Porter C.: Campylobacter jejuni strain CG8421: a refined model for the study of Campylobacteriosis and evaluation of Campylobacter vaccines in human subjects. Clin. Infect. Dis. 49, 1512–1519 (2009)
75. Unal C.M., Schaar V., Riesbeck K.: Bacterial outer membrane vesicles in disease and preventive medicine. Semin. Immunopathol. 33, 395–408 (2011)
76. van de Waterbeemd B., Streefland M., van der Ley P., Zomer B., van Dijken H.: Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine, 28, 4810–4816 (2010)
77. van der Ley P., Steeghs L., Hamstra H.J.: Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect. Immun. 69, 5981–5990 (2001)
78. Von Seidlein L., Kim D.R., Ali M., Lee H., Wang X.: A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3, DOI: 10.1371/journal.pmed.0030353 (2006)
79. Wiersinga W.J., Currie B.J., Peacock S.J.: Melioidosis. N. Engl. J. Med. 367, 1035–1044 (2012)
80. Wyle F.A., Artenstein M.S., Brandt B.L.: Immunologic response of man to group B meningococcal polysaccharide vaccines. J. Infect. Dis. 126, 514–521 (1972)
81. Yaron S., Kolling G.L., Simon L., Matthews K.R.: Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66, 4414–4420 (2000)
82. Yonezawa H., Osaki T., Kurata S., Fukuda M., Kawakami H., Ochiai K., Hanawa T., Kamiya S.: Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, DOI: 10.1186/1471-2180-9-197 (2009)
83. Young K.T., Davis L.M., Dirita V.J.: Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5, 665–679 (2007)
84. Zhou L., Srisatjaluk R., Justus D.E., Doyle R.J.: On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228 (1998)