Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 1 (June 2018) > List of articles


Grzegorz M. Cech * / Agnieszka Szalewska-Pałasz

Keywords : Hfq protein, DNA, RNA, riboregulation

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 1, Pages 12-21, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 23-May-2019



The Hfq protein is one of the most important regulatory factors acting at the RNA level. This protein was first discovered as a host factor necessary for Qβ bacteriophage development. Following the discovery, the Hfq role in bacteriophage development was not investigated in depth. In subsequent years, however, many studies revealed various riboregulatory functions of this protein, mainly focused on facilitating sRNA and mRNA pairing, regulating both the degradation and stability of many transcripts. The Hfq protein has the ability to bind to nucleic acids – it binds more efficiently to RNA, but can also attach to DNA. It has been also proved that Hfq is involved in the nucleoid organization. These observations open room for discussion on the potential role of Hfq in the regulation of DNA replication. Since Hfq protein affects many cellular processes, the deletion of the gene encoding this protein has a pleiotropic effect on the cell.

Content not available PDF Share



1. Aiba H.: Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139 (2007)

2. Arluison V., Folichon M., Marco S., Derreumaux P., Pellegrini O., Seguin J., Hajnsdorf E., Regnier P.: The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 271, 1258–1265 (2004)

3. Arluison V., Mura C., Guzmán M.R., Liquier J., Pellegrini O., Gingery M., Régnier P., Marco S.: Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J. Mol. Biol. 356, 86–96 (2006)

4. Azam T.A., Ishihama A.: Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999)

5. Bardill J.P., Zhao X., Hammer B.K.: The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol. Microbiol. 80, 1381–1394 (2011)

6. Bi E.F., Lutkenhaus J.: FtsZ ring structure associated with division in Escherichia coli. Nature, 354, 161–4 (1991)

7. Brennan R.G., Link T.M.: Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10, 125–133 (2007)

8. Carmichael G.G., Weber K., Niveleau A., Wahba A.J.: The host factor required for RNA phage Q beta RNA replication in vitro. Intracellular location, quantitation, and purification by polyadenylate-cellulose chromatography. J. Biol. Chem. 250, 3607–3612 (1975)

9. Cech G.M., Pakuła B., Kamrowska D., Wegrzyn G., Arluison V., Szalewska-Pałasz A.: Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication. Plasmid, 73, 10–15 (2014)

10. Chao Y., Vogel J.: The role of Hfq in bacterial pathogens.: Curr. Opin. Microbiol. 13, 24–33 (2010)

11. Dame R.T., Noom M.C., Wuite G.J.L.: Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature, 444, 387–390 (2006)

12. de Haseth P. L., Uhlenbeck O. C.: Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry, 19, 6138–6146 (1980)

13. Diestra E., Cayrol B., Arluison V., Risco C.: Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane. Plos One, 4, (2009)

14. Fortas E., Piccirilli F., Malabirade A., Militello V., Trépout S., Marco S., Taghbalout A., Arluison V.: New insight into the structure and function of Hfq C-terminus. Biosci. Rep. 35, 1–9 (2015)

15. Franze de Fernandez M.T., Hayward W.S., August J.T.: Bacterial proteins required for replication of phage Q ribonucleic acid. Pruification and properties of host factor I, a ribonucleic acid-binding protein. J. Biol. Chem. 247, 824–831 (1972)

16. Geinguenaud F., Calandrini V., Teixeira J., Mayer C., Liquier J., Lavelle C., Arluison V.: Conformational transition of DNA bound to Hfq probed by infrared spectroscopy. Phys. Chem. 13, 1222–1229 (2011)

17. Guillier M., Gottesman S., Storz G.: Modulating the outer membrane with small RNAs. Gene. Dev. 20, 2338–2348 (2006)

18. Guisbert E., Rhodius V.A., Ahuja N., Witkin E., Gross C.A.: Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J. Bacteriol. 189, 1963–1973 (2007)

19. Hermann H., Fabrizio P., Raker V.A., Foulaki K., Hornig H., Brahms H., Luhrmann R.: snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 14, 2076–2088 (1995)

20. Holmqvist E., Wright P. R., Li L., Bischler T., Barquist L., Reinhardt R., Vogel J.: Global RNA recognition patterns of post‐transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35(9), 991–1011. (2016)

21. Hori K., Yanazaki Y.: Nucleotide sequence specific interaction of host factor I with bacteriophage Q beta RNA. FEBS Lett. 43, 20–22 (1974)

22. Ikeda Y., Yagi M., Morita T., Aiba H.: Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. Microbiol. 79, 419–432 (2011)

23. Jiang K., Zhang C., Guttula D., Liu F., van Kan J. A., Lavelle C., Kubiak K., Malabirade A., Lapp A., Arluison V., van der Maarel J.R.C.: Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res. 43, 4332–4341 (2015)

24. Kajitani M., Kato A., Wada A., Inokuchi Y., Ishihama A.: Regulation of the Escherichia coli hfq gene encoding the host factor for phage Q beta. J. Bacteriol. 176, 531–534 (1994)

25. Link T.M., Valentin-Hansen P., Brennan R.G.: Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc. Natl. Acad. Sci. USA, 106, 19292–19297 (2009)

26. Lu F., Taghbalout A.: Membrane association via an amino-terminal amphipathic helix is required for the cellular organization and function of RNase II. J. Biol. Chem. 288, 7241–7251 (2013)

27. Melamed S., Peer A., Faigenbaum-Romm R., Gatt Y.E., Reiss N., Bar A., Margalit, H.: Global Mapping of Small RNA-Target Interactions in Bacteria. Molecular Cell, 63(5), 884–897 (2016)

28. Mohanty B.K., Maples V.F., Kushner S.R.: The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 54, 905–920 (2004)

29. Moll I., Afonyushkin T., Vytvytska O., Kaberdin V. R., Blasi U.: Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA, 9, 1308–1314 (2003)

30. Muffler A., Fischer D., Hengge-Aronis R.: The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev. 10, 1143–1151 (1996)

31. Mura C., Randolph P.S., Patterson J., Cozen A.E.: Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol. 10, 636–651 (2013)

32. Ohniwa R.L., Muchaku H., Saito S., Wada C., Morikawa K.: Atomic force microscopy analysis of the role of major DNA-binding proteins in organization of the nucleoid in Escherichia coli. Plos One, 8, e72954 (2013)

33. Olejniczak M.: Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 50, 4427–4440 (2011)

34. Papenfort K., Vogel J.: Regulatory RNA in bacterial pathogens.: Cell Host Microbe, 8, 116–127 (2010)

35. Paull T.T., Haykinson M.J., Johnson R.C.: The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7, 1521–1534 (1993)

36. Ramos C.G., Sousa S.A., Grilo A.M., Feliciano J.R., Leitao J.H.: The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 193, 1515–1526 (2011)

37. Rice J.B., Vanderpool C.K.: The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res. 39, 3806–3819 (2011)

38. Ross J.A., Ellis M.J., Hossain S., Haniford D.B.: Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA, 19, 670–684 (2013)

39. Ross J.A., Trussler R.S., Black M.D., McLellan C.R., Haniford D.B.: Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS. Mob. DNA, 5, 27 (2014)

40. Santiago-Frangos A., Jeliazkov J.R., Gray J.J., Woodson S.A.: Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife, 6, e27049 (2017)

41. Sauer E., Schmidt S., Weichenrieder O.: Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc. Natl. Acad. Sci. USA, 109, 9396–9401 (2012)

42. Schu D.J., Zhang A., Gottesman S., Storz G.: Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 34 (20), 2557–2573 (2015)

43. Senear A.W., Steitz J.A.: Site-specific interaction of Q beta host factor and ribosomal protein S1 with Q beta and R17 bacteriophage RNAs. J. Biol. Chem. 251, 1902–1912 (1976)

44. Skoko D., Yan J., Johnson R.C., Marko J.F.: Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. Phys. Rev. Lett. 95, 208101 (2005)

45. Sonnenfield J.M., Burns C.M., Higgins C.F., Hinton J.C.: The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie, 83, 243–249 (2001)

46. Swinger K.K., Rice P.A.: IHF and HU: Flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35 (2004)

47. Talukder A., Ishihama A.: Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. Sci. China Life Sci. 58, 902–911 (2015)

48. Tsui H.C., Feng G., Winkler M.E.: Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J. Bacteriol. 179, 7476–7487 (1997)

49. Tsui H.C., Leung H.C., Winkler M.E.: Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol. Microbiol. 13, 35–49 (1994)

50. Udekwu K.I., Darfeuille F., Vogel J., Reimegård J., Holmqvist E., Wagner E.G.H.: Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Gene. Dev. 19, 2355–2366 (2005)

51. Updegrove T.B., Correia J.J., Galletto R., Bujalowski W., Wartell R.M.: E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta, 1799, 588–596 (2010)

52. Valentin-Hansen P., Eriksen M., Udesen C.: The bacterial Sm-like protein Hfq: A key player in RNA transactions. Mol. Microbiol. 51, 1525–1533 (2004)

53. Vassilieva I.M., Nikulin A.D., Blasi U., Moll I., Garber M.B.: Crystallization of Hfq protein: a bacterial gene-expression regulator. Acta Crystallogr. D. Biol. Crystallogr. 59, 1061–1063 (2003)

54. Vassilieva I.M., Rouzanov M.V, Zelinskaya N.V, Moll I., Blasi U., Garber M.B.: Cloning, purification, and crystallization of a bacterial gene expression regulator – Hfq protein from Escherichia coli. Biochemistry, 67, 1293–1297 (2002)

55. Vaughan S., Wickstead B., Gull K., Addinall S.G.: Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J. Mol. Evol. 58, 19–29 (2004)

56. Vecerek B., Beich-Frandsen M., Resch A., Blasi U.: Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding. Nucleic Acids Res. 38, 1284–1293 (2010)

57. Vogel J., Luisi B.F.: Hfq and its constellation of RNA.: Nat. Rev. Microbiol. 9, 578–589 (2011)

58. Vogt S.L., Raivio T.L.: Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli. Mol. Microbiol. 92, 681–697 (2014)

59. Vytvytska O., Jakobsen J.S., Balcunaite G., Andersen J.S., Baccarini M., von Gabain A.: Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc. Natl. Acad. Sci. USA, 95, 14118–14123 (1998)

60. Vytvytska O., Moll I., Kaberdin V.R., Von Gabain A., Bläsi U.: Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Gen. Dev. 14, 1109–1118 (2000)

61. Zhang A., Altuvia S., Tiwari A., Argaman L., Hengge-Aronis R., Storz G.: The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061–6068 (1998)