Share / Export Citation / Email / Print / Text size:

Postępy Mikrobiologii - Advancements of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 0079-4252
eISSN: 2545-3149





Volume / Issue / page

Related articles

VOLUME 57 , ISSUE 3 (April 2018) > List of articles


Aleksandra Wawro *

Keywords : genome shuffling, yeast, Saccharomyces cerevisiae, bioethanol production

Citation Information : Postępy Mikrobiologii - Advancements of Microbiology. Volume 57, Issue 3, Pages 278-285, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 24-May-2019



Modern technologies of bioethanol production require distillation yeast characterized by thermotolerance, osmotolerance and increased resistance to secondary metabolites. To date, no strains have been observed in nature which possess all of the above-mentioned characteristics. For many years, intensive research has been carried out to improve the technological properties of industrial strains. A number of methods have been developed to allow genetic improvement of distillery yeasts. One of the most promising and effective methods is genome shuffling, allowing the creation of hybrids whose genome is a combination of large DNA fragments derived from strains with distinct phenotypic traits. Genome shuffling creates a chance that the new strain will have valuable functional genes, including their full operons. This, in turn, increases the chance of a long-term maintenance of beneficial technological features by the obtained hybrids.

Content not available PDF Share



1. Adrio J.L., Demain A.L.: Genetic improvement of processes yielding microbial products. FEMS Microbiol. Rev. 30, 187–214 (2006)

2. Babik W.: Ewolucja genomów i powstawanie nowych genów. Kosmos, Problemy Nauk Biologicznych, 58, 385–393 (2009)

3. Bai F.W., Anderson W.A., Moo-Young A.: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26, 89–105 (2008)

4. Bajwa P.K., Pinel D., Martin V.J.J., Trevors J.T., Lee H.: Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J. Microbiol. Methods. 81, 179–186 (2010)

5. Bekker V., Dodd A., Brady D., Rumbold K.: Tools for metabolic engineering in Streptomyces. Bioengineered. 5, 293–299 (2014)

6. Białas W., Wojciechowska D., Szymanowska D., Grajek W.: Optymalizacja procesu jednoczesnej hydrolizy i fermentacji natywnej skrobi metodą powierzchni odpowiedzi. Biotechnologia, 4, 183–199 (2009)

7. Biot-Pelletier D., Martin V.J.J.: Evolutionary engineering by genome shuffling. Appl. Microbiol. Biotechnol. 98, 3877–3887 (2014)

8. Bonin S.: Tradycyjne metody modyfikacji drożdży (w) Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E. Lipińska, Wydawnictwo SGGW (wyd. 1), Warszawa, 2013, s. 282–301

9. Brown T.A.: Genomy. PWN Wyd. Naukowe, Warszawa, 2001, s. 472

10. Chmiel A.: Biotechnologia podstawy mikrobiologiczne i biochemiczne. Wyd. Naukowe PWN (wyd. 2), Warszawa, 1994, s. 364

11. Choudhary J., Singh S., Nain L.: Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Biotechnol. 21, 82–92 (2016)

12. Costa D.A., de Souza C.J.A., Costa P.S., Rodrigues M.Q.R.B., dos Santos A.F., Lopes M.R., Genier H.L.A., Silveira W.B., Fietto L.G. Physiological characterization of thermotolerant yeast for cellulosic ethanol production. Appl. Microbiol. Biotechnol. 98, 3829–3840 (2014)

13. Demain i Báez-Vásquez Demain A.L., Báez-Vásquez M.A.: Biofuels of the Present and the Future (w) New and Future Developments in Catalysis: Catalytic Biomass Conversion, red. S.L. Suib, Elsevier, 2013, s. 325–370

14. Edgardo A., Parra C., Rodriguez M., Jaime B.: Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 43, 120–123 (2008)

15. Engel S.R., Cherry J.M. wsp.:The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. G3-Genes Genom. Genet. 4, 389–398 (2014)

16. Evans G.G., Furlong J.: Environmental Biotechnology: Theory and Application. John Wiley & Sons (wyd. 2), 2011, s. 11–48

17. Fernandes i Murray Fernandes S., Murray P.: Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs. 1, 424–428 (2010)

18. Fiedurek J.: Biologiczne podstawy procesów mikrobiologicznych (w) Podstawy biotechnologii przemysłowej, red. W. Bednarski, J. Fiedurek, Wydawnictwa Naukowo-Techniczne, Warszawa, 23007, s. 57–85

19. Goffeau A., Oliver S.G. i wsp.: Life with 6000 genes. Science, 274, 563–567 (1996)

20. Gong G., Ma L., Chen X.: Isolation and improvement of Saccharomyces cerevisiae for producing the distilled liquor. J. Chem. Pharm. Res. 6, 283–288 (2014)

21. Gong J., Zheng H., Wu Z., Chen T., Zhao X.: Genome shuffling: Progress and applications for phenotype improvement. Biotechnol. Adv. 27, 996–1005 (2009)

22. Grajek W., Szymanowska D.: Stresy środowiskowe działającena drożdże Saccharomyces cerevisiae w procesie fermentacji etanolowej. Biotechnologia, 3, 46–63 (2008)

23. Henderson C.M., Block D.E.: Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 80, 2966–2972 (2014)

24. Klis F.M., Boorsma A., De Groot P.W.J.: Cell wall construction in Saccharomyces cerevisiae. Yeast, 23, 185–202 (2006)

25. Kroumov A.D., Modenes A.N., de Araujo Tait M.C.: Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochem. Eng. Journal. 28, 243–255 (2006)

26. Kumari R., Pramanik K.: Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Biosci. Bioeng. 114, 622–629 (2012)

27. Kunicka A., Rajkowska K.: Charakterystyka mikroorganizmów. Drożdże (w) Mikrobiologia techniczna. Mikroorganizmy i środowiska ich występowania (tom I), red. Z. Libudzisz, K. Kowal, Z. Żakowska, Wydawnictwo Naukowe PWN, Warszawa, 2010, s. 353

28. Ledakowicz S.: Od inżynierii metabolicznej przez biologię systemów do inżynierii biologicznej. Inż. Ap. Chem. 48, 17–20 (2009)

29. Levin D.E.: Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics. 189, 1145–1175 (2011)

30. Lipińska E. Drożdże gorzelnicze i biosynteza etanolu (w) Zastosowanie wybranych drobnoustrojów w biotechnologii żywności, red. M. Gniewosz, E.Lipińska, Wydawnictwo SGGW (wyd. 1), Warszawa, 2013, s. 155–166

31. Liu Z-H., Qin L., Zhu J-Q., Li B-Z. and Yuan Y-J.: Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol. Biofuels. 7,167 (2014)

32. Mackiewicz P., Zakrzewska-Czerwińska J., Cebrat S.: Genomika – dziedzina wiedzy XXI wieku. Biotechnologia, 3, 7–21 (2005)

33. Nicholl Nicholl D.S.T.: An introduction to genetic engineering, Combridge University Press (wyd. 3), s. 327 (2008)

34. Orlean P.: Architecture and Biosynthesis of the Saccharomyces cerevisiae. Cell Wall Genetics. 192, 775–818 (2012)

35. Orosco F.L., Estrada S.M., Simbahan J.F., Alcantara V.A., Pajares I.G.: Genome shuffling for improved thermotolerance, ethanol tolerance and ethanol production of Saccharomyces cerevisiae 2013. Philippine Science Letters, 10, 22–28 (2017)

36. Parekh i in. Parekh S., Vinci V.A., Strobel R.J.: Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54, 287–301 (2000)

37. Pereira F.B., Romanía A., Ruiz H.A., Teixeira J.A., Domingues L.: Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Biores. Technol. 161, 192–199 (2014)

38. Petri R., Schmidt-Dannert C.: Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opinion Biotechnol. 15, 298–304 (2004)

39. Podgórska I., Solarska E.: Wykorzystanie drożdży Saccharomyces cerevisiae w zabezpieczaniu procesów fermentacyjnych. Przemysł Fermentacyjny i Owocowo-Warzywny, 3, doi:10.15199/64.2016.3.6 (2016)

40. Richard P., Verho R., Putkonen M., Londesborough J., Penttila M.: Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res. 3, 185–189 (2003)

41. Rubin-Pitel S.B., Chao C.M-H., Chen W., Zhao H.: Directed Evolution Tools in Bioproduct and Bioprocess Development (w) Bioprocessing for Value-Added Products from Renewable Resources, red. Yang S-T., Elsevier, 2007, s. 49–72

42. Ruiz H.A., Silva D.P., Ruzene D.S., Lima L.F., Vicente A.A., Teixeira J.A.: Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions. Fuel, 95, 528–536 (2012)

43. Satyanarayana T., Kunze G.: Yeast biotechnology: diversity and applications, Springer Netherlands, 2009

44. Schlegel H.G.: Mikrobiologia ogólna, Wyd. Naukowe PWN, Warszawa, 2003

45. Shi D.J., Wang C.L, Wang K.M.: Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36, 139–47 (2009)

46. Snoek T., Picca Nicolino M., Van den Bremt S., Mertens S., Saels V., Verplaetse A., Steensels J., Verstrepen KJ.: Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol. Biofuels. 26, 8–32 (2015)

47. Spencer J., Phister T.G., Smart K.A., Greetham D.: Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Research Notes, 7, 151 (2014)

48. Steenles J., Snoek T., Meersman E., Picca Nicolino M., Voordeckers K., Verstrepen K.J.: Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38, 47–995 (2014)

49. Stephanopoulos G.N., Aristidou A.A., Nielsen J.: Metabolic Engineering: Principles and Methodologies, San Diego, Academic Press, 1998, s. 725

50. Strąk E., Balcerek M.:Wybrane technologie wykorzystywane w przemyśle gorzelniczym, Acta Sci. Pol. Biotechnol. 14, 33–44 (2015)

51. Sybirny i in. Sybirny W., Puchalski Cz., Sybirny A.: Metaboliczna inżynieria drobnoustrojów do konstruowania wydajnych producentów bioetanolu z lignocelulozy. Biotechnologia, 4, 38–54 (2007)

52. Świątek M., Lewandowska M., Bednarski W.: Doskonalenie procesów biotechnologicznych stosowanych w produkcji etanolu II generacji z surowców lignocelulozowych. Postępy Nauk Rolniczych, 1, 121–131 (2011)

53. Tao i in. Tao X., Zheng D., Liu T., Wang P., Zhao W., Zhu M., Jiang X., Zhao Y., Wu X.: A Novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. Plos One, 7, 1–10 (2012)

54. Walczak P., Kunicka A., Kręgiel D., Drewicz E.: Ulepszanie i przechowywanie mikroorganizmów (w) Mikrobiologia techniczna. Mikroorganizmy i środowiska ich występowania, red. Z. Libudzisz, K. Kowal, Z. Żakowska (tom I), Wyd. Naukowe PWN, Warszawa, 2010, s. 353

55. Wallace V.: Improving stress tolerance in industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic biomass department of chemistry, Lund University, praca doktorska, 2014

56. Wallace-Salinas V., Gorwa-Grauslund M.F.: Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol. Biofuels. 6, 151 (2013)

57. Wang M., Zhang W., Xu W., Shen Y., Du L.: Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Microbiol. Biotechnol. Appl. 1–8 (2016)

58. Węgleński P., Golik P.: Inżyniera genetyczna (w) Genetyka molekularna, red. P. Węgleński. Wydawnictwo PWN, Warszawa, 2008, s. 109–134

59. Yamada R., Tanaka T., Ogino C., Fukuda H., Kondo A.: Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl. Microbiol. Biotechnol. 85, 1491–1498 (2010)

60. Yamada R., Taniguchi N., Tanaka T., Ogino Ch. Fukuda H., Kondo A.: Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol. Biofuels. 4, doi: 10.1186/1754-6834-4-8 (2011)

61. Zhang Y.X., Perry K. Vinci V.A., Powell K., Stemmer W.P.C., del Cardayre S.B.: Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646 (2002)

62. Zheng D.Q., Wu X.Ch., Wang P-M., Chi X-Q., Tao X-L., Li P. Jiang X-H., Zhao Y-H.: Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 38, 415–422 (2011)