UTILIZATION OF MULTIPLE SHORT HEAT CONSUMPTION MEASUREMENT METHOD FOR DIAGNOSTICS OF HEAT SOURCE OF EXISTING BUILDING: PART 1: THEORETICAL BASIS OF THE METHOD

Publications

Share / Export Citation / Email / Print / Text size:

Architecture, Civil Engineering, Environment

Silesian University of Technology

Subject: Architecture, Civil Engineering, Engineering, Environmental

GET ALERTS

ISSN: 1899-0142

DESCRIPTION

15
Reader(s)
39
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 11 , ISSUE 1 (March 2018) > List of articles

UTILIZATION OF MULTIPLE SHORT HEAT CONSUMPTION MEASUREMENT METHOD FOR DIAGNOSTICS OF HEAT SOURCE OF EXISTING BUILDING: PART 1: THEORETICAL BASIS OF THE METHOD

Henryk FOIT / Piotr LUBINA / Dawid TĄTA

Citation Information : Architecture, Civil Engineering, Environment. Volume 11, Issue 1, Pages 117-131, DOI: https://doi.org/10.21307/ACEE-2018-012

License : (BY-NC-ND-4.0)

Received Date : 12-July-2017 / Accepted: 24-January-2018 / Published Online: 01-April-2019

ARTICLE

ABSTRACT

Streszczenie

W artykule zaprezentowano określanie wymaganej mocy cieplnej dla diagnostyki źródła ciepła istniejącego budynku mieszkalnego. W celu zaproponowano wyznaczanie wymaganej mocy cieplnej budynku z wykorzystaniem oryginalnej metody kilkukrotnego krótkiego pomiaru zużycia ciepła w istniejącym budynku mieszkalnym z wentylacją naturalną. W części pier- wszej przedstawiono główne idee metody.

1. INTRODUCTION

The thermal diagnostics of heating systems and heat source is connected with the verification of compatibility of the required and actual power of the heat source and heating systems [1, 4]. Determining the required power is one of the tasks of thermal heat source diagnostics. The need to perform such diagnostics periodically is due to national regulations and standards and the directives of the European Parliament and the Council of Europe. It is not always easy to determine the required heat power for existing residential building. The scale of difficulty increases with the increase in the cubic capacity and the number of building users. The lack of construction documentation for the building, lack of knowledge about the composition of the layered construction partitions, forming the outer coating of the heated space, aging of materials, moisture prevents the appropriate calculations. The complete or partial replacement of windows by building users and the introduction of heterogeneous windows of varying degrees of thermal resistance and air tightness make it difficult to correctly assess the heat demand by calculation methods. In residential buildings, especially built more than 15 years ago, natural ventilation is usually used.

In [4] there is included a procedure for determining the required heat source power based on a long-term measurement that includes determining seasonal heat consumption and determining the heat gains and loss of the temperature balance of the building. The problem of determining the heat demand of buildings and its accuracy, also determining the demand (consumption) or the required power of the heat source taking into account the measurements are, among others, reported in works [6, 7, 15, 18-28]. This paper presents the calculation of the heat demand for the central heating installation based on short in-situ measurements in the considered building. The works [8-14, 22-27] present the idea of a proposed method based on defining the loss coefficient by the transmission HT of the building external envelope elements and the heat loss coefficient for ventilation HV together with the average ventilation change coefficient of heat loss Hb and the average daily heat gain flux from people and appliances in the building (ϕZ,oc+ ϕZ,eq). This method uses, among others, multiple short in- situ measurement of daily heat consumption in a building. Determining of HT and HV allows to estimate the designed heat loss of a building and further, taking into account the heat demand for hot water preparation, the required heat power of the source and the oversizing of the heating source (heating system).

2. ASSUMPTIONS CONCERNING HEAT BALANCE EQUATION

The basic assumptions for determining the in-situ short-time measurements of the required heat source power for an existing building are as follows:

  • the temperatures in the heated rooms are similar to the design values of indoor air temperature,

  • the settlement of the building is similar to the design, and the individual internal heat gains from people and equipment correspond to the typical values of a residential building,

  • the current air tightness of the building determines the mass of air flowing into the building under average heating conditions close to the minimum flow resulting from hygienic needs,

  • measurements are made during the heating season in conditions close to average.

Determining the heat loss transmission and ventilation coefficients, and the number of ventilation air changes nV and the flow of internal heat gains requires knowledge of the group of values, mainly determined by measurement.

To determine value of measurements’ group, it is necessary to:

make several short (daily) measurements of the heat consumption in the building for the purpose of central heating (using a heat meter, a heat flux meter or gas meter, fuel volume oil meter, mass or volume of solid fuel) and the temperature of the heating factor and, if it is possible, daily course of external air temperature and, if there is a need, internal air temperature, and also one-time measurement of the air temperature in the basement and if necessary in the selected area in the ceiling (eg. on the border of the plaster and the construction layer of the ceiling) or control temperature measurements of the inner surface of the outer wall (walls), as well as the ceiling above top floor.

Measurements should be made for the following values:

  • daily heat consumption by central heating installation ϕu, kWh,

  • average daily outdoor air temperature t¯e10.21307/ACEE-2018-012-eqn46.jpg, if necessary, indoor air temperature,

  • average air temperature in the building’s heated space on measured days,

  • average daily temperature in the basement.

These measurements should be supplemented with the results obtained from the nearest meteorological station, measured routinely:

  • hourly daily course of outdoor air temperature te,

  • hourly course of daily wind speed,

  • hourly daily passes of average direct and diffuse solar radiation streams,

or use the results of measurements of hourly outdoor air temperature, wind speed, and solar radiation intensity, determined by the local meteorological station, or use measurements of these values by an individual meteorological station installed at the time of measurements near the considered building.

The basis for the implementation of the method is also to determine the geometrical and structural features of the building and its functional characteristics, such as the number of inhabitants, the type and number of heated rooms, and also the type and parameters of central heating and possibly heat sources. These values are derived from the operational documentation of the building or are obtained by means of rapid thermal diagnostics of the building.

The days chosen for measurements should be these without rain and snow and with moderate wind. As measurement days also very cloudy days should be avoided as well as days with moderate outside temperatures (not above 5 (7)°C, as a midday temperature) and at the same time very sunny days, which would be accompanied by significant overheating of the rooms and / or opening of the windows by inhabitants.

On the basis of the determined measurement data, the daily thermal balances for the building under consideration can be calculated as follows:

(1)
ϕu(t¯e1)ηtrt(t¯e1)=HTrz(t¯it¯e1**)++nV(t¯e1)3600VBcpρp(t¯it¯e1)++(ϕZ,oc+ϕZ,eq+ϕZ,tr(t¯e1))ηehg(t¯e1)10.21307/ACEE-2018-012-eqn1.jpg
where:

ti – indoor temperature, °C

t¯e10.21307/ACEE-2018-012-eqn47.jpg – daily average outdoor temperature, °C,

t¯e**10.21307/ACEE-2018-012-eqn48.jpg – modified external temperature taking into account the temperature in unheated basement of the building, °C,

HTrz10.21307/ACEE-2018-012-eqn49.jpg – heat loss transmission coefficient, W/K,

ϕu – measured, average utility heat flux for considered day, W,

ηtrt – efficiency of transmission, regulation and transfer of heat for central heating,

ϕsw – average heat flux for heating the ventilation air for considered day, W,

ϕz – average internal heat gains flux for considered day, W,

ηehg – efficiency of use of the internal heat gains,

ϕZ,oc – average heat gains flux from people for considered day, W,

ϕZ,eq – average heat gains flux from appliances for considered day, W,

ϕZ,tr – average for considered day, differential heat flux from solar radiation through transparent components,

nV – number of air ventilation changes for conditions related to t¯e10.21307/ACEE-2018-012-eqn50.jpg, 1/h,

VB – volume of the heated area of the building, m3,

cp – specific heat capacity of air, J/(kg·K),

ρp – density of air, kg/m3,

1....j......k – numbers of measurement days.

3. PRESENTATION OF THE PROPOSED METHOD

Several times (k-fold) daily measurement of heat consumption for purposes of central heating of a building ϕu(t¯ej10.21307/ACEE-2018-012-eqn51.jpg) gives the possibility to write a system of balance equations for days by increasing temperature t¯el10.21307/ACEE-2018-012-eqn52.jpg:

(2)
{ϕu(t¯e1)ηtrt(t¯e1)=HTrz(t¯it¯e1**)+nV(t¯e1)3600VBcpρp.(t¯it¯e1)+(ϕZ,oc+ϕZ,eq+ϕZ,tr(t¯e1))ηehg(t¯e1).ϕu(t¯ej)ηtrt(t¯ej)=HTrz(t¯it¯ej**)+nV(t¯ej)3600VBcpρp(t¯it¯ej)+(ϕZ,oc+ϕZ,eq+ϕZ,tr(t¯ej)).ηehg(t¯ej)..ϕu(t¯ek)ηtrt(t¯ek)=HTrz(t¯it¯ek**)+nV(t¯ek)3600VBcpρp(t¯it¯ek+(ϕZ,oc+ϕZ,eq+ϕZ,tr(t¯ej)).ηehg(t¯ek)10.21307/ACEE-2018-012-eqn2.jpg

In the system of equations (2) the heat loss transmission coefficient through the partitions HTrz10.21307/ACEE-2018-012-eqn53.jpg is the value as (without reduction coefficients due to the temperature of the unheated space deviating from the actual outdoor temperature):

HTrz=ApUp+ΨMlM,10.21307/ACEE-2018-012-eqn155.jpg
where:

Ap – surface of the envelope elements of heated building (external walls, windows and external doors, ceiling above the top floor, ceiling over the unheated basement), m2,

UpU coefficients of the envelope elements of the heated building space, W/(m2K),

lM – length of the linear bridges of the elements of envelope limiting the volume of the building heated, m,

ΨM – coefficients of heat transmission through the linear bridges of the partitions of the building envelope limiting the heated volume of building, W/(mK).

Accepting the record HVjrz=nv(t¯ej)3600VBcpρp10.21307/ACEE-2018-012-eqn54.jpg system (2) can be presented as follows:

(3)
{HTrz(t¯it¯e1**)+HV1rz(t¯it¯e1)=ϕu(t¯e1)ηtrt(t¯e1)++(ϕZ,oc+ϕZ,eq)ηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTrz(t¯it¯ej**)+HV1rz(t¯it¯ej)=ϕu(t¯e1)ηtrt(t¯ej)++(ϕZ,oc+ϕZ,eq)ηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTrz(t¯it¯ek**)+HV1rz(t¯it¯ek)=ϕu(t¯ek)ηtrt(t¯ek)++(ϕZ,oc+ϕZ,eq)ηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn3.jpg
Assuming that
(4)
HVjrz=HVrz+ΔH=HVrz+Hbt¯ej10.21307/ACEE-2018-012-eqn4.jpg
and marking ϕz = (ϕZ,oc + ϕZ,eq) it can be written:
(5)
{HTrz(t¯it¯e1**)+HVrz(t¯it¯e1)+Hbt¯e1(t¯it¯e1)==ϕu(t¯e1)ηtrt(t¯e1)+ϕzηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTrz(t¯it¯ej**)+HVrz(t¯it¯ej)+Hbt¯ej(t¯it¯ej)==ϕu(t¯ej)ηtrt(t¯ej)+ϕzηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTrz(t¯it¯ek**)+HVrz(t¯it¯ek)+Hbt¯ek(t¯it¯ek)==ϕu(t¯ek)ηtrt(t¯ek)+ϕzηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn5.jpg
where Hb – average ventilation change coefficient of heat loss due to change of ventilation intensity as a function of daily outside temperature, W/K2.

Numerous attempts to solve the system for the relevant measurement data (affected by some errors) by method of determinants or linear regression have led to results that are not physically correct.

Therefore, in relation to the system (2), another procedure was used to determine HVrz10.21307/ACEE-2018-012-eqn55.jpg (and so nv) and Hb.

Another form of the system (2) can be obtained if in the system equations (t¯it¯ej)(t¯it¯ej**)const.10.21307/ACEE-2018-012-eqn56.jpg:

(6)
{[HTrz+HVrz(t¯it¯e1)(t¯it¯e1**)](t¯it¯e1**)+Hbt¯e1(t¯it¯e1)==ϕu(t¯e1)ηtrt(t¯e1)+ϕZηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..[HTrz+HVrz(t¯it¯ej)(t¯it¯ej**)](t¯it¯ej**)+Hbt¯ej(t¯it¯ej)==ϕu(t¯ej)ηtrt(t¯ej)+ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..[HTrz+HVrz(t¯it¯ek)(t¯it¯ek**)](t¯it¯ek**)+Hbt¯ek(t¯it¯ek)==ϕu(t¯ek)ηtrt(t¯ek)+ϕZηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn6.jpg
and, after accepting:
(6a)
HTrz+HVrz(t¯it¯ej)(t¯it¯ej**)=HTVrz,10.21307/ACEE-2018-012-eqn6a.jpg
and noticing on the basis of the assumptions made:
(6b)
HTVrzconst10.21307/ACEE-2018-012-eqn6b.jpg
present the system (5) as:
(6c)
{HTVrz(t¯it¯e1**)+Hbt¯e1(t¯it¯e1)==ϕu(t¯e1)ηtrt(t¯e1)+ϕzηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTVrz(t¯it¯ej**)+Hbt¯ej(t¯it¯ej)==ϕu(t¯ej)ηtrt(t¯ej)+ϕzηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTVrz(t¯it¯ek**)+Hbt¯ek(t¯it¯ek)==ϕu(t¯ek)ηtrt(t¯ek)+ϕzηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn6c.jpg
The condition (t¯it¯ej)(t¯it¯ej**)const10.21307/ACEE-2018-012-eqn57.jpg is better fulfilled, the difference (t¯it¯ej)10.21307/ACEE-2018-012-eqn58.jpg is higher (so the days should be selected with a sufficiently large differences (t¯it¯ej)10.21307/ACEE-2018-012-eqn59.jpg). The lower the outdoor temperature, the temperature t¯ej**10.21307/ACEE-2018-012-eqn60.jpg is usually closer to the temperature t¯ej10.21307/ACEE-2018-012-eqn61.jpg.

Further part presents procedures of designation HTVrz10.21307/ACEE-2018-012-eqn62.jpg and HTrz10.21307/ACEE-2018-012-eqn63.jpg, HVrz10.21307/ACEE-2018-012-eqn64.jpg, Hb and also ϕz.

First method

In order to implement it, the terms Hbt¯ej(t¯it¯ej)10.21307/ACEE-2018-012-eqn65.jpg should be omitted in the systems (3), (5) or (6c). The omission would be fully justified for t¯ej=010.21307/ACEE-2018-012-eqn66.jpg, then the term Hbt¯ej(t¯it¯ej)(t¯it¯ej**)=010.21307/ACEE-2018-012-eqn67.jpg. For |t¯ej|010.21307/ACEE-2018-012-eqn68.jpg there appears a certain inaccuracy of the method. As a result of the omission of the terms Hbt¯ej(t¯it¯ej)10.21307/ACEE-2018-012-eqn69.jpg in incompitable systems of balance equations (3), (6c), it is possible in further part to determine firstly the auxiliary values HTVrz10.21307/ACEE-2018-012-eqn70.jpg and further the principal searched values in the form ϕZ, HTrz10.21307/ACEE-2018-012-eqn71.jpg and HVrz10.21307/ACEE-2018-012-eqn72.jpg. After omitting the terms Hbt¯ej(t¯it¯ej)10.21307/ACEE-2018-012-eqn73.jpg and assuming ηehgconst1,010.21307/ACEE-2018-012-eqn74.jpg, the chosen equations (r..s) of the system (6c) should be subtracted from successive equations [(1 … k) − (r..s)], what results in:

(7)
{(HTVrz)a={ϕu(t¯e1)ηtrt(t¯e1)ϕu(t¯er)ηtrt(t¯er)+[ϕZ,tr(t¯e1)ηehg(t¯e1)ϕZ,tr(t¯er)ηehg(t¯er)]}/(t¯er**t¯e1**)dlat¯ea=|t¯e1|+|t¯er|2..(HTVrz)f={ϕu(t¯ej)ηtrt(t¯ej)ϕu(t¯ep)ηtrt(t¯ep)++[ϕZ,tr(t¯ej)ηehg(t¯ej)ϕZ,tr(t¯ep)ηehg(t¯ep)]}/(t¯ep**t¯ej**)dlat¯ef=|t¯ej|+|t¯ep|2..(HTVrz)h={ϕu(t¯ek)ηtrtp(t¯ek)ϕu(t¯es)ηtrt(t¯es)++[ϕZ,tr(t¯ek)ηehg(t¯ek)ϕZ,tr(t¯es)ηehg(t¯es)]}/(t¯es**t¯ek**)dlat¯eh=|t¯ek|+|t¯es|210.21307/ACEE-2018-012-eqn7.jpg
Equations occuring in the systems (7), resulting from the subtraction of equations of the output system, will be further referred to as the differential equations.

Subtracting the equations from one another should be done in such a way, that representing of all equations of the system (7) was equal and the differences in temperature t¯e**10.21307/ACEE-2018-012-eqn75.jpg were bigger than 3 K and the equation used to form the differential equation (minuend, subtrahend) always corresponded to the positive value of the temperature difference t¯e10.21307/ACEE-2018-012-eqn76.jpg, e.g for equations j and p: t¯ept¯ej>010.21307/ACEE-2018-012-eqn77.jpg. At the same time, the equations of each pair of equations making up the differential equations should have similar approximate values HTVrz10.21307/ACEE-2018-012-eqn78.jpg.

The condition of equal representation of equations (6c) in the differential equations system (7) is related to the assumption that individual equations of the system (6c) derive from their “perfect” state. The state of “perfect” equations is the form of thermal balance equation, which corresponds to the fulfillment of the required measurement conditions (fulfillment of the assumed operation of the building on the day of measurement) and the quality of measurements taken into account in the balance of values. Usually, the balance equations are deriving from the “perfect” state. If it is correct to assume that in the considered equation system there is a balance of these deviations, then in the differential equations system (7) representation of individual equations of system (6c) should be equal. If, however, in equation (6c), with the following equations ordered in decreasing temperature difference (t¯i-t¯e**)10.21307/ACEE-2018-012-eqn79.jpg, the last equation would be similar to “perfect”, then the differential equation system (6) can be constructed by subtracting the last equation from succeeding equations. Such a procedure is accompanied by obtaining of the system (7) well replacing system (6c), with differential equations sorted in decreasing difference (t¯ep**-t¯ej**)10.21307/ACEE-2018-012-eqn80.jpg. The equations of each pair of equations creating differential equations should have similar approximate values HTVrz10.21307/ACEE-2018-012-eqn81.jpg. Values HTVrz10.21307/ACEE-2018-012-eqn82.jpg should be estimated for successive equations of systems (5) or (6c), after omitting the terms containing Hb.

The linear approximation [(HTVrz)a,(HTVrz)f,(HTVrz)h]10.21307/ACEE-2018-012-eqn83.jpg in decreasing temperature function t¯ea,t¯ef,t¯eh10.21307/ACEE-2018-012-eqn84.jpg leads to equation as: (HTVrz)o=aapt¯eo+bo10.21307/ACEE-2018-012-eqn85.jpg, what results in:

(7a)
HTVrz=(HTVrz)t¯e=0=aap0+bo=bo10.21307/ACEE-2018-012-eqn7a.jpg

Second method

The condition for applying this procedure is as follows: in equation (6c) there are balance equations with days jj, for which t¯jj010.21307/ACEE-2018-012-eqn86.jpg.

From the equations system (5c) are chosen equations with days (m … ..n), for which t¯ej010.21307/ACEE-2018-012-eqn87.jpg, what also means Hbt¯ej(t¯it¯ej)(t¯it¯ej**)010.21307/ACEE-2018-012-eqn88.jpg:

(8)
{HTVrz(t¯it¯em**)=ϕu(t¯em)ηtrt(t¯em)+ϕZηehg(t¯em)++ϕZ,tr(t¯em).ηehg(t¯em)..HTVrz(t¯it¯ej**)=ϕu(t¯ej)ηtrt(t¯ej)+ϕZηehg(t¯ej)++ϕZ,tr(t¯ej).ηehg(t¯ej)..HTVrz(t¯it¯en**)=ϕu(t¯en)ηtrt(t¯en)+ϕZηehg(t¯en)++ϕZ,tr(t¯en).ηehg(t¯nk)10.21307/ACEE-2018-012-eqn8.jpg

The efficiency ηehg of using internal gains ϕZ takes values close to 1, so it can be assumed that ϕZηehg = const.

After subtracting from the successive equations [(m … n) − (r..s)] the selected equations (r..s) of the system (8) the result is:

(8a)
{HTVrz(t¯er**t¯em**)==ϕu(t¯em)ηprp(t¯em)+ϕu(t¯er)ηprp(t¯er)++[ϕZsprzezr(t¯em)ηwyk(t¯em)ϕZsprzezr(t¯er)ηwyk(t¯er)]..HTVrz(t¯ep**t¯ej**)==ϕu(t¯ej)ηprp(t¯ej)+ϕu(t¯ep)ηprp(t¯ep)++[ϕZsprzezr(t¯ej)ηwyk(t¯ej)ϕZsprzezr(t¯ep)ηwyk(t¯ep)]..HTVrz(t¯en**t¯es**)==ϕu(t¯es)ηprp(t¯es)ϕu(t¯en)ηprp(t¯en)++[ϕZsprzezr(t¯es)ηwyk(t¯es)ϕZsprzezr(t¯en)ηwyk(t¯en)]10.21307/ACEE-2018-012-eqn8a.jpg

Subtracting the equations from one another should be done in such a way that representing all of the equations of the system (7) in the system (t) was equal, and the temperature differences t¯e**10.21307/ACEE-2018-012-eqn89.jpg big as possible. The equations of each pair of equations that create differential equations should have approximate estimated values HTVrz10.21307/ACEE-2018-012-eqn90.jpg.

The system (7a) allows to determine the value HTVrz10.21307/ACEE-2018-012-eqn91.jpg by the matrix account:

(9)
M=[t¯em**t¯er**..t¯ep**t¯ej**..t¯en**t¯es**],W=[ϕu(t¯em)ηtrt(t¯em)ϕu(t¯ep)ηtrt(t¯ep)++[ϕZ,tr(t¯em)ηehg(t¯em)ϕZ,tr(t¯ep).ηehg(t¯ep)]..ϕu(t¯ej)ηtrt(t¯ej)ϕu(t¯ep)ηtrt(t¯ep)++[ϕZ,tr(t¯ej)ηehg(t¯ej)ϕZ,tr(t¯ep).ηehg(t¯ep)]..ϕu(t¯en)ηtrt(t¯en)ϕu(t¯es)ηtrt(t¯es)++[ϕZ,tr(t¯en)ηehg(t¯en)ϕZ,tr(t¯es).ηehg(t¯es)]],HTVrz=[MTM]1MTW10.21307/ACEE-2018-012-eqn9.jpg
where:

MT – transpose of matrix M, [MTM]−1 - inverse matrix of the matrix product MT i M.

If omitted in the system equations (8a) of the component from Hb causes occurring of an error - its value for the differential equations j and p is δϕjp:

(10)
δϕjp=Hb[tej(t¯it¯ej)tep(t¯it¯ep)]10.21307/ACEE-2018-012-eqn10.jpg
and the average value for all equations is δϕmm.

If the mean temperature difference is δtmm:

(11)
δtmm={t¯em**t¯er**..t¯ep**t¯ej**..t¯en**t¯es**}10.21307/ACEE-2018-012-eqn11.jpg
Than the error of designation HTVrz10.21307/ACEE-2018-012-eqn92.jpg caused by the deviation δϕmm takes the form of: δHTVrz=|δϕmmδtmm|10.21307/ACEE-2018-012-eqn93.jpg.

3.1. Determination of the coefficient Hb

After returning to the system (6c) and substituting to the system a designated value HTVrz10.21307/ACEE-2018-012-eqn94.jpg, the following are obtained:

(12)
{HTVrz(t¯it¯e1**)+Hbt¯e1(t¯it¯e1)=ϕu(t¯e1)ηtrt(t¯e1)++ϕZηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTVrz(t¯it¯ej**)+Hbt¯ej(t¯it¯ej)=ϕu(t¯ej)ηtrt(t¯ej)++ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTVrz(t¯it¯ek**)+Hbt¯ek(t¯it¯ek)=ϕu(t¯ek)ηtrt(t¯ek)++ϕZηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn12.jpg

The system can be presented as:

(13)
{Hbt¯e1(t¯it¯e1)ϕZηehg(t¯e1)=HTVrz(t¯it¯e1**)++ϕu(t¯e1)ηtrt(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..Hbt¯ej(t¯it¯ej)ϕZηehg(t¯ej)=HTVrz(t¯it¯ej**)++ϕu(t¯ej)ηtrt(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..Hbt¯ek(t¯it¯ek)ϕZηehg(t¯ek)=HTVrz(t¯it¯ek**)++ϕu(t¯ej)ηtrt(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn13.jpg

The system gives the solution:

(14)
[ϕZHb]=[MTM]1MTW,10.21307/ACEE-2018-012-eqn14.jpg
for:
(15)
M=[t¯e1(t¯it¯e1)ηehg(t¯e1)..t¯ej(t¯it¯ej)ηehg(t¯ej)..t¯ek(t¯it¯ek)ηehg(t¯ek)],W=[HTVrz(t¯it¯e1**)+ϕu(t¯e1)ηtrt(t¯e1)++ϕZ,tr(t¯e1)ηehg(t¯e1)...HTVrz(t¯it¯ej**)+ϕu(t¯ej)ηtrt(t¯ej)++ϕZ,tr(t¯ej)ηehg(t¯ej)...HTVrz(t¯it¯ek**)+ϕu(t¯ek)ηtrt(t¯ek)++ϕZ,tr(t¯ek)ηehg(t¯ek).]10.21307/ACEE-2018-012-eqn15.jpg

3.2. Determining of internal heat gains flux ϕZ

After substituting to the system (6c) designated values HTVrz10.21307/ACEE-2018-012-eqn95.jpg and Hb the following values are obtained:

(16)
{HTVrz(t¯it¯e1**)+Hbt¯e1(t¯it¯e1)=ϕu(t¯e1)ηtrt(t¯e1)++ϕZηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTVrz(t¯it¯ej**)+Hbt¯ej(t¯it¯ej)=ϕu(t¯ej)ηtrt(t¯ej)++ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTVrz(t¯it¯ek**)+Hbt¯ek(t¯it¯ek)=ϕu(t¯ek)ηtrt(t¯ek)++ϕZηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn16.jpg
and than:
(17)
{ϕZ=HTVrz(t¯it¯e1**)+Hbt¯e1(t¯it¯e1)ϕu(t¯e1)ηtrt(t¯e1)ϕZ,tr(t¯e1)ηehg(t¯e1)ηehg(t¯e1)..ϕZ=HTVrz(t¯it¯ej**)+Hbt¯e1(t¯it¯ej)ϕu(t¯ej)ηtrt(t¯ej)ϕZ,tr(t¯ej)ηehg(t¯ej)ηehg(t¯ej)..ϕZ=HTVrz(t¯it¯ek**)+Hbt¯ek(t¯it¯ek)ϕu(t¯ek)ηtrt(t¯ek)ϕZ,tr(t¯ek)ηehg(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn17.jpg

The system gives the solution:

(18)
[ϕZ]=[MTM]1MTW,10.21307/ACEE-2018-012-eqn18.jpg
for:
(19)
M=[1..1..1],W=[HTVrz(t¯it¯e1**)+Hbt¯e1(t¯it¯e1)ϕu(t¯e1)ηtrt(t¯e1)ϕZ,tr(t¯e1)ηehg(t¯e1)ηehg(t¯e1)...HTVrz(t¯it¯ej**)+Hbt¯e1(t¯it¯ej)ϕu(t¯ej)ηtrt(t¯ej)ϕZ,tr(t¯ej)ηehg(t¯ej)ηehg(t¯ej)...HTVrz(t¯it¯ek**)+Hbt¯ek(t¯it¯ek)ϕu(t¯ek)ηtrt(t¯ek)ϕZ,tr(t¯ek)ηehg(t¯ek)ηehg(t¯ek)].10.21307/ACEE-2018-012-eqn19.jpg

3.3. Determination of heat loss coefficients HTVrz, HVrz

Condition of use: system (3b, 6c) must contain a suitable number of mutually compatible equations. Designation of HTrz10.21307/ACEE-2018-012-eqn98.jpg and HVrz10.21307/ACEE-2018-012-eqn99.jpg should follow from the system of equations, which is not identical with the system from which the simultaneous determination of Hb and ϕZ was made.

Designated values HTrz10.21307/ACEE-2018-012-eqn100.jpg and HVrz10.21307/ACEE-2018-012-eqn101.jpg will be associated with the values ϕZ and Hb accepted to define them.

Using a transformed system (3b, 6c), after substituting Hb and ϕZ determined earlier, the result is:

(20)
{HTrz(t¯it¯e1**)+HVrz(t¯it¯e1)=Hbt¯e1(t¯it¯e1)++ϕu(t¯e1)ηtrt(t¯e1)+ϕuηehg(t¯e1)+ϕZ,tr(t¯e1)ηehg(t¯e1)..HTrz(t¯it¯ej**)+HVrz(t¯it¯ej)=Hbt¯ej(t¯it¯ej)++ϕu(t¯e1)ηtrt(t¯ej)+ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)..HTrz(t¯it¯ek**)+HVrz(t¯it¯ek)=Hbt¯ek(t¯it¯ek)++ϕu(t¯ek)ηtrt(t¯ek)+ϕZηehg(t¯ek)+ϕZ,tr(t¯ek)ηehg(t¯ek)10.21307/ACEE-2018-012-eqn20.jpg

Determination of HTrz10.21307/ACEE-2018-012-eqn102.jpg and HVrz10.21307/ACEE-2018-012-eqn103.jpg follows by solution of the overdetermined system of equations according to:

(21)
[HTrzHVrz]=[MTM]1MTW10.21307/ACEE-2018-012-eqn21.jpg
where:

M – two-column matrix of coefficients at HTrz10.21307/ACEE-2018-012-eqn104.jpg and HVrz10.21307/ACEE-2018-012-eqn105.jpg in system equations,

W – column matrix of free terms in the system equations.

On this basis it is possible to estimate:

(21a)
nV=HVrz3600VBcpρp10.21307/ACEE-2018-012-eqn21a.jpg

Specifying HTVrz10.21307/ACEE-2018-012-eqn106.jpg and HTrz10.21307/ACEE-2018-012-eqn107.jpg, HVrz10.21307/ACEE-2018-012-eqn108.jpg, Hb and z requires the knowledge of the meaningful temperature for measurement conditions t¯e**10.21307/ACEE-2018-012-eqn109.jpg.

The temperatures t¯e**10.21307/ACEE-2018-012-eqn110.jpg as averages for the range Δτ{1, 2, …, Δτ} can be derived from the dependence:

(22)
t¯e**=titi(a3+a4+a5)++1Δτ{τ=1τ=Δτ[a3te(τ)+a4ϑi(τ)+a5t¯n(τ)]},°C,10.21307/ACEE-2018-012-eqn22.jpg
where:

ti – indoor air temperature, °C,

te(τ) – outdoor temperature measured in the hour τ, °C,

t¯n(τ)10.21307/ACEE-2018-012-eqn111.jpg – temperature in unheated basement (generally, in an unheated room adjoining heated space), estimated for te(τ), °C,

ϑi(τ) – average temperature of the inner surface of the partitions of building envelope surrounding heated space of the building, °C,

Coefficients are equal to:

(23a)
a1=AwUwAshaUsha,10.21307/ACEE-2018-012-eqn23a.jpg
(23b)
a2=(AshaAw)RiAshaUw,10.21307/ACEE-2018-012-eqn23b.jpg
(23c)
a3=AwUwAshaUsha+AnUn,10.21307/ACEE-2018-012-eqn23c.jpg
(23c)
a4=(AshaAw)Ri(AshaUsha+AnUn),10.21307/ACEE-2018-012-eqn23c1.jpg
(23d)
a5=AnUnAshaUsha+AnUn,10.21307/ACEE-2018-012-eqn23d.jpg
where:

Asha – the surface of the envelope surrounding the heated space of the building with bypassing the ceiling over the unheated basement,m2,

Usha – estimated average coefficient U for the envelope surrounding the heated space of the building (including thermal bridges) with bypassing the ceiling over the unheated basement W/(m2K),

Aw – surface of the building windows, m2,

Ri – average thermal resistance by the inner side of the envelope partitions of the heated building space, m2K/W,

An – partition area between the heated and unheated space of the building (ceiling above the unheated basement), m2,

Un – predicted heat transfer coefficient (including thermal bridges) for partitions between heated and unheated building space (ceiling above unheated basement), W/(m2K).

Determination of coefficients, a1, a2, a3, a4, a5 requires the estimation of the heat loss coefficient for ventilation HV, the coefficient Uw for the windows in the building and the replacement heat transfer coefficient for the whole envelope of the heated building space and the temperature in the unheated space adjacent to the heated one t¯n10.21307/ACEE-2018-012-eqn112.jpg.

It is recommended to take the time interval Δτ as =24 h ⋅ 5= 120 h.

Determining HTVrz10.21307/ACEE-2018-012-eqn113.jpg, HTrz10.21307/ACEE-2018-012-eqn114.jpg, HVrz10.21307/ACEE-2018-012-eqn115.jpg, Hb, ϕZ by subtracting two different daily heat requirements is connected with determination of HTVrz10.21307/ACEE-2018-012-eqn116.jpg, HTrz10.21307/ACEE-2018-012-eqn117.jpg, HVrz10.21307/ACEE-2018-012-eqn118.jpg, Hb, ϕZ for the averaged daily internal heat gains and ventilation intensity.

Determination of coefficients a3, a4, a5 requires, as already mentioned, the estimation of the coefficient Uw for windows in a building in an unheated basement and the replacement heat transfer coefficient for the entire space envelope of the heated building space and the temperature in the unheated basement t¯n10.21307/ACEE-2018-012-eqn119.jpg.

The determined heat loss transmission coefficient was defined in the presented analysis as:

(24)
HTrz=Asha.Usha+AnUn,W/K,10.21307/ACEE-2018-012-eqn24.jpg
what means that its value in the given relations is constant. In [4] the heat loss transmission coefficient is defined as:
(25)
HTrz=Asha.Usha+btUnAn=AshaUsha++titntiteUnAn,W/K,10.21307/ACEE-2018-012-eqn25.jpg
where:

Asha – surface of the external envelope of the building without ceiling surface above the basement, m2,

Usha – coefficient U of the outer envelope of the building (including thermal bridges) without ceiling area above the basement, W/(m2K),

bt – coefficient of temperature reduction,

bt=titntite,10.21307/ACEE-2018-012-eqn156.jpg

ti – indoor air temperature, °C,

tn – air temperature in basement, °C,

te – outdoor air temperature, °C,

Un – coefficient U of the ceiling above the basement, W/(m2K),

An – surface of the ceiling above the basement, m2.

The average temperature of the inner surface of the envelope partitions surrounding the heated space of the building ϑi results from the dependence:

(26)
ϑi(τ)=n=1n=nk{[he(n)][te(τn)+(q.s.z.c.rad.(τn))aabss.z.Re]]}+hiti,°C,10.21307/ACEE-2018-012-eqn26.jpg
where:

nk – number of hours of the time horizon in the past preceding the considered hour τ on the day of measurement,

n – succeeding hour, among hours preceding hour τ,

q.s.z.c.rad.10.21307/ACEE-2018-012-eqn120.jpg – average hourly flux of total solar radiation on the surface of the building’s outer partitions, W/m2,

aabss.z.10.21307/ACEE-2018-012-eqn121.jpg – coefficient of absorption of total solar radiation on the surface of the building’s outer partitions,

Re10.21307/ACEE-2018-012-eqn122.jpg – average heat transmission resistance on the outer envelope surface of the heated space of the building, m2K/W,

hi i he – impulse response functions determined by the EXODUS method [8-13, 22-26].

The assumption of the predicted coefficient Usha (average for the coating surrounding the heated space of the building excluding the ceiling over the unheated basement) is to be understood as taking the initial value of this coefficient and further correction of it on the basis of the determined value HTrz10.21307/ACEE-2018-012-eqn123.jpg until the required conformance of these values is achieved.

The next steps in assumption Usha are:

  • determining the windows area Aw and the characteristics of the windows used (window type (single leaf, double leaf) number of glass, type of glass and type of frame), which allows to determine the coefficient Uw,

  • determining the surface of the envelope surrounding the heated space of the building omitting the ceiling over the unheated basement Asha,

  • determining of the ceiling surface over the unheated basement An,

  • estimation of the Un coefficient for the ceiling over an unheated basement on the basis of arrays for known conventional ceiling constructions, such as a ceiling containing a reinforced concrete slab, Ackerman ceiling or DZ-3 or, in the case of unknown structures, on the basis of a temperature measurement ϑ¯n10.21307/ACEE-2018-012-eqn124.jpg in the ceiling at a specific location, e.g the borderline of the plaster (on the side of the basement), the elementary ceiling layer and the temperature in the basement t¯n10.21307/ACEE-2018-012-eqn125.jpg and the room above the ceiling of the basement t¯i10.21307/ACEE-2018-012-eqn126.jpg. The temperatures t¯n10.21307/ACEE-2018-012-eqn127.jpg, t¯i10.21307/ACEE-2018-012-eqn128.jpg and ϑ¯n10.21307/ACEE-2018-012-eqn129.jpg, can be treated as constant, so that the heat flow through the ceiling - as determined in time. In the case of the temperature measurements on the borderline of the internal plaster on the basement side and the homogeneous construction layer above, the value Un is derived from the dependence:

    (27)
    Un=1Rn=ϑn¯t¯(Rip+dtwλtw)(t¯it¯n),W/(m2K),10.21307/ACEE-2018-012-eqn27.jpg
    where:

    dtw – thickness of the inner plaster layer covering the ceiling above the basement, m,

    λtw – heat conduction coefficient for the interior plaster covering the ceiling above the basement, W/(mK),

    Rip – heat transmission resistance (on the side of the internal plaster) on the surface of the internal plaster covering the ceiling above the basement, m2K/W,

  • assumption based on the thermal protection requirements in force during the construction of the building or thermal modernization of the external partition coefficient Usp, except for windows and ceilings over an unheated basement,

  • determining on the basis of assumed assumptions and findings (resulting from e.g the technical documentation of the building or the requirements of thermal protection in force during the building or thermal modernization) of the projected coefficient Usha as:

    (28)
    Upzbsp=Usp(AshaAw)+UwAwAshaW/(m2K).10.21307/ACEE-2018-012-eqn28.jpg

The value Usha be taken in the following steps is equal to:

(29)
Usha=aMTH¯TrzUnAnUwk.AwAshaW/(m2K)10.21307/ACEE-2018-012-eqn29.jpg
where:

aMT – participation of heat loss through thermal bridges in heat transmission loss, aMT ≈ 0,75,

H¯TrzHTrz10.21307/ACEE-2018-012-eqn130.jpg W/K value determined in previous step.

When adopting a new value Usha for the next calculation step, it is also necessary, in justified cases (large difference Usha for subsequent steps) to do the correction of coefficients hi i he on the basis of correction of assumed state of the outer partition layer. Correction may consist in determining for a layer with the expected maximum uncertainty of its state (layers of thickness di and current coefficient λip10.21307/ACEE-2018-012-eqn131.jpg) a new value λi. The new value of the coefficient Usp, which replaces in the next step the value of the previous one Uspp10.21307/ACEE-2018-012-eqn132.jpg, in the case of significant similarity of the layers of the external vertical walls and the ceiling above the highest floor (walls in the form of reinforced concrete slabs and reinforced concrete floors) can be determined from dependency:

(30)
Usp=aMTH¯TrzUnAnUw.AwAshaAnAw,W/(m2K).10.21307/ACEE-2018-012-eqn30.jpg

The new value λi of layer i is:

(31)
λi=di(Usp)1(Uspp)1+diλip,W/(m2K).10.21307/ACEE-2018-012-eqn31.jpg

A similar correction can be made for layer di thickness. In general, the correction should be based on the coefficient λi or thickness di, as the most uncertain values of the partition, the state of which in the most significant way influences the meaningful temperature ϑi. In the case of significant differences in the structure and U coefficients of the vertical walls and the ceiling above the highest floor, in the presented procedure for determination of Uspp10.21307/ACEE-2018-012-eqn133.jpg, the U of the vertical walls has to be determined on the basis of the known or well-estimated ceiling coefficient Usd above the highest floor and ceiling area above the highest floor Asd. The comments given when determining Un can be used for determining Usd coefficient. However, the estimation of Usd is more difficult and is associated with greater uncertainty as compared with Usp because of the lack of fully established state on the upper surface of the ceiling under the unheated attic and not fully established state on the surface of the flat roof. The presented method of expressing temperature te**10.21307/ACEE-2018-012-eqn134.jpg allows to skip in the dependencies (4)–(20) the average, for the considered measurement days, heat gains flux from solar radiation through the opaque partitions for the measurement cycles associated with t¯ej(ϕZ,tr(t¯ej))10.21307/ACEE-2018-012-eqn135.jpg and the average daily heat accumulation flux in the outer partitions of the building (Δϕa), because ϑi(τ) includes the variability of the outside temperature and the intensity of the radiation affecting the outer walls. [8, 9] presents the coefficients hi and he and the values a3, a4, a5 for the exemplary partitions.

Designated values ϕzj (e.g from (17), (18)) may be the basis for selecting the equations included in the system. The equations (days of measurement), for which ϕzj deviate the most from the mean value ϕzj, should be omitted in the next approximation step. At least 8- day measurement should be done. After 7 day measurements, the obtained results should be analyzed. For this purpose, the value of the loss coefficient HTVjrz10.21307/ACEE-2018-012-eqn136.jpg has to be determined for individual measurement days j and the expected average daily gains ϕz as:

(32)
HTVjrz=ϕu(t¯ej)ηtrt(t¯ej)VBnVcpρp(t¯it¯ej)++ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)(t¯it¯ej**)W/K,10.21307/ACEE-2018-012-eqn32.jpg

t¯ej**10.21307/ACEE-2018-012-eqn137.jpg – equivalent temperature on the measurement day j, °C,

nv – number of ventilation air changes estimated for the given day j, 1/h,

VB – volume of the heated area of the building, m3,

cp – specific heat capacity of air, J/(kg⋅K),

ρp – density of air, kg/m3.

On the basis of the values obtained HTVjrz10.21307/ACEE-2018-012-eqn138.jpg (j is the number of the succeeding measurement day in question), the arithmetic mean HTVJrz10.21307/ACEE-2018-012-eqn139.jpg should be determined, and the days with the significant deviation from HTVJrz10.21307/ACEE-2018-012-eqn140.jpg should be rejected from the days measurements for subsequent days so that the number of days after the elimination of the days with significant deviation from elimination of the days with significant deviation from HTVJrz10.21307/ACEE-2018-012-eqn141.jpg bigger than 10% was at least 8.

The final verification of the days taken for the final analysis should also be made on the basis of the estimated pre-determined average gains ϕZj, based on the measured data for the considered days and compared to the expected average daily gains.

As the basis for expected returns the indicators given in [16] can be used, and:

  • in the Regulation of the Minister of Infrastructure of 6 November 2008 on the methodology for calculating the energy characteristic of a building constituting an independent technical and utility unit as well as the way of drawing up and specifying the certificates of their energy characteristic (Journal of Laws 2008 No. 201 item 1240) as 3.2 – 6.0 W/m2 for multi-family buildings and 2.5 – 3.5 W/m2 for single-family houses

  • in the Regulation of the Minister of Infrastructure of June 3, 2014 on the methodology for calculating the energy characteristic of a building and a dwelling or a part of a building constituting an independent technical and utility unit and the manner of drawing up and specifying energy characteristic certificates (Journal of Laws of 2014, item 888) as 7.1 W/m2 for residential and 1.0 W/m2 for staircases in multi-family buildings and 6.8 W/m2 for single-family houses.

After omitting in the generalized balance equation of the system (12)

(33)
HTVjrz(t¯it¯ej**)+Hbt¯ej(t¯it¯ej)=ϕu(t¯ej)ηtrt(t¯ej)+ϕZηehg(t¯ej)+ϕZ,tr(t¯ej)ηehg(t¯ej)10.21307/ACEE-2018-012-eqn33.jpg
the component containing Hb (Hb=0) and accepting and proceeding according to (8), (8a) and (9), it is possible to determine the coefficient HTVrz10.21307/ACEE-2018-012-eqn142.jpg.

By using the set value HTVrz10.21307/ACEE-2018-012-eqn143.jpg and keeping the assumption Hb = 0, the approximate gains ϕZj for each measurement day can be determined:

(34)
ϕZj=HTZrz(t¯it¯e**)[ϕu(t¯e)ηtrt(t¯e)++ϕZ,tr(t¯e)ηehg(t¯e)]ηehg(t¯e),kW10.21307/ACEE-2018-012-eqn34.jpg

The efficiency of using internal gains can be determined on the basis of the total heat gains of the building: ϕu + ϕZ + ϕZ.tr (from people, appliances and solar radiation) and heat demand for compensation of the heat loss of the building (transmission through the partitions and ventilation) ϕden, using the dependence:

(35)
ηu=1eϕdemϕu+ϕZ+ϕZ,tr1.10.21307/ACEE-2018-012-eqn35.jpg

4. CONCLUSIONS

The basic stages (steps) of the method of multiple daily measurements in order to determine the values allowing to determine the thermal characteristics of a building are as follows:

  • on the basis of analysis of HTVrz10.21307/ACEE-2018-012-eqn144.jpg, balance equations should be selected for the system of characteristic equations for the multiple- measurement method,

  • the system of equations characteristic of the multiple-measurement method should be created by at least 8-day balance equations. If during the days of measurements a significant constance of operating conditions of the building was maintained (constant number of people staying in the building, moderate weathering, constant room air temperature) and reliable information has been obtained on the partitions surrounding the heated space of the building, then the number of measurement days can be reduced to the specified lower limit. In case of significant incompatibility of balance equations, steps should be taken to obtain system with more equations greater than 8,

  • it is profitable for a proper determination of the coefficient Hb to cover the daily temperature range 10°Ct¯e5(7)°C10.21307/ACEE-2018-012-eqn145.jpg,

  • among the days of measurement should also be a few days with 3°Ct¯e3(7)°C10.21307/ACEE-2018-012-eqn146.jpg,

  • in systems of differential equations, equations with significant temperature t¯e**10.21307/ACEE-2018-012-eqn147.jpg differences should be created,

  • equations of each pair of equations making up the differential equations should have approximate estimated values HTVrz10.21307/ACEE-2018-012-eqn148.jpg,

  • for the determination of the sought values, it is advantageous to take into account the daily heat balances of heat accumulation from solar radiation through the windows in the form of the adoption of the average daily heat gains flux from solar radiation containing ¾ of gains resulting from the radiation transmitted by windows on the considered day and ¼ of the gains from the radiation of the previous day,

  • in the created differential equation system there should be a equilibrium representation of balance equations in the form of the minuends and subtrahends,

  • determined values ϕZj can be the basis for selecting equations considered in the system. In the next approximation step equations (days of measurement), for which ϕZj deviate the most from the average value ϕZj should be omitted,

  • on the basis of the determined values ϕZj, the value HTVrz10.21307/ACEE-2018-012-eqn149.jpg can be evaluated: if the values ϕZj are negative or very small, this may indicate to low value of the determined HTVrz10.21307/ACEE-2018-012-eqn150.jpg – than HTVrz10.21307/ACEE-2018-012-eqn151.jpg should be re-determined for the corrected balance equations system. Correction should consist in the elimination from the system of equations corresponding to the “wrong” values ϕZj, and possibly replacing them with the new balance equations,

  • in the case of significantly different values ϕZj corresponding to individual balance equations (with a maximum value ϕZj: ϕZ max), but at the same time values ϕZj close to are expected, it’s been suggested to accept as the value of daily gains ϕZ = (0,7 − 0,9) ⋅ ϕmax. Then HTVrz10.21307/ACEE-2018-012-eqn152.jpg should be re-determined for the assumed value of gains ϕZ = (0.7 − 0.9) ⋅ ϕmax.

  • if the determined distribution of internal gains covers ϕZj included in the range (0.7 − 1.0). ϕZ max, the arithmetic mean of the determined values ϕZj can be accepted as value ϕZ,

  • the results obtained with the solution of the overdetermined system of balance equations by means of the matrix method and the determinants, with the course of proceedings presented in the monograph, do not deviate significantly from the results obtained by the multiple regression method. Such a state of results is inter alia the result of the accepted measured uncertainties. The results obtained by the regression method, however, are also accompanied by the determination of their uncertainty,

  • using the meaningful temperature in place of the outside air temperature in a multiple-daily measuring method to determine the values allowing to determine the building’s thermal characteristics leads to a significant change in the results (improvement of their accuracy).

The determined values HTVrz10.21307/ACEE-2018-012-eqn153.jpg and ηV refer to the average conditions associated with t¯e0°C10.21307/ACEE-2018-012-eqn154.jpg.

ACKNOWLEDGEMENTS

The work was founded within: 08/010/BK_17/0024 (BK 227/RIE1/2017) and 08/10/BKM-16/0019 supported by Polish Ministry of Science and Higher Education

References


  1. Directive 2010/31/EU of the European Parliament of the Council of 19 May 2010 on the energy performance of buildings (recast).
  2. Directive 2002/91/EC of the European Parliament of the Council of 16 December 2002 on the energy performance of buildings.
  3. PN-EN 15378:2009. Heating Systems In Buildings – Inspection Of Boilers And Heating Systems
  4. PN-EN 12831:2006. Heating Systems in Buildings-Mathod for Calculation of the Design Heat Load
  5. Rozporządzenie Ministra Infrastruktury dnia 6 listopada 2008r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej, Dz. U. Nr 201, poz.1240. (Regulation of the Polish Minister of Infrastructure Methodology for calculating the energy performance of building) (in Polish).
  6. Oschatz, B. (2006). Physikalische Bewertung vorgeschlagener Messverfahren zur energetischen Inspektion von Heizungsanlagen. Des Bundesministerium für Verkehr, Bau und Stadtentwicklung. Dresden.
  7. Donath, M. (2006). Analyse des Betriebsverhaltens von Heizungsanlagen bei der Wärmeversorgung von Gebäuden. Dissertation. Universität Rostock.
  8. Foit, H. & Szewczyk, M. (2011). Określanie charakterystyki cieplnej istniejącego budynku z zastosowaniem dwukrotnego pomiaru. (Determination of heat charakteristics of existing building using double measurement. Part 1, 2, 3). Ciepłownictwo Ogrzewnictwo Wentylacja, 1, 3, 5,
  9. Foit, H. & Szewczyk, M. (2011). Określanie zapotrze-bowania na ciepło końcowe budynku mieszkalnego na podstawie krótkotrwałego pomiaru. (Determination of heat demand of residential building based on brief measurement), Rynek Energii, 6.
  10. Foit, H. & Świerc, A. (2012). Wyznaczanie wymaganej mocy źródła ciepła na potrzeby diagnostyki cieplnej budynku mieszkalnego. (Measurement based determination of power demand of heat source for thermal diagnostics of dwelling houses), Rynek Energii, 5.
  11. Foit, H. (2006). Optymalizacja ochrony cieplnej budynku mieszkalnego, instalacji i źródła ciepła. (Optimization of thermal protection, installations, and heat source in a dwelling house), Zeszyty Naukowe Politechniki Śląskiej, Inżynieria Środowiska, z. 1717, Gliwice Wydawnictwo Politechniki Śląskiej.
  12. Foit H., Świerc A., & Szewczyk, M. (2013). Miarodajna temperatura zewnętrzna na potrzeby charakterystyki energetycznej budynku. (Equivalent external temperature for energy performance of buildings), Rynek Energii, 3.
  13. Foit, H. (2015). Wyznaczanie podstawowych wielkoś-ci w celu określenia charakterystyki energetycznej istniejącego budynku mieszkalnego z zastosowaniem krótkich pomiarów. Monografia (Determining the base sizes to obtain building’s thermal characteristics of existing residential building using method of brief measurements. Monograph) Gliwice: Politechnika Śląska.
  14. Foit, H. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 2. Diagnostyka in situ źródeł ciepła oraz instalacji grzewczych i ciepłej wody użytkowej. (Handbook of Thermal Diagnostics of Buildings Vol.2) Gliwice: Politechnika Śląska.
  15. Kaczmarczyk, J. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 4. Diagnostyka in situ środowiska wewnętrznego w budynkach. (Handbook of Thermal Diagnostics of Buildings Vol 4) Gliwice, Politechnika Śląska.
  16. Lubina P., & Nantka, M. (2009). Internal heat gains in relation to the dynamics of buildings heat requirements. ACEE Architecture, Civil Engineering, Environment 2(1), 137–142.
  17. Popiołek, Z. et al. (2013) Poradnik diagnostyki cieplnej budynków Tom 5. Kompleksowa diagnostyka cieplna in situ w praktyce. (Handbook of Thermal Diagnostics of Buildings Vol 5. Comprehensive thermal diagnostics in situ in practice.) Gliwice Politechnika Śląska.
  18. Popiołek Z., & Bartosz, D. (2015) Prognozowanie zużycia ciepła na cele grzewcze i wentylacyjne w budynku mieszkalnym. (Heat demand forecasting for heating and ventilation purposes in multi-family building), Rynek energii, 5.
  19. Specjał, A. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 6. Metodyka wyznaczania świadectwa charakterystyki energetycznej budynku na podstawie pomiarów. (Handbook of Thermal Diagnostics of Buildings Vol 6. Methodology for determining the energy performance of a building based on measurements) Gliwice: Politechnika Śląska.
  20. Specjał, A. (2012). Dokładność wyznaczania charakterystyki energetycznej budynków na podstawie krótkich pomiarów, (Accuracy of determining the energy performance of buildings based on short measurements) Rynek Energii, 6, 63–69.
  21. Specjał A. & Bartosz D. (2014) Metoda bilansowa wyznaczania sezonowego zapotrzebowania na ciepło na podstawie dwutygodniowych pomiarów zużycia ciepła w budynku (Balance method for determining the seasonal heat demand on the basis of two weeks heat consumption measurements in the building), INSTAL 12, 37–43.
  22. Świerc A. (2014) Wyznaczanie strat ciepła przez przenikanie istniejącego budynku mieszkalnego na potrzeby jego diagnostyki cieplnej (Estimation of transmission heat losses in residential buildings for their thermal diagnostics.) (PhD thesis, Silesian University of Technology). Poland, Gliwice.
  23. Świerc A., & Foit H. (2013) Evaluation of required heat source power in existing buildings based on short measurements. Engineering systems for Buildings. Proceedings of the 16th Conference for Junior Researchers “Science – Future of Lithuania”. Vilnius: Vilniaus Gedimino Technikos Universitetas. Aplinkos inzinerijos fakultetas, 140–145.
  24. Świerc A., & Foit H. (2013). Problems with Indication of Representative Area in Multi-Family Residential Building for Purpose of Thermal Diagnostics, Ciepłownictwo, Ogrzewnictwo, Wentylacja 44, 364–368
  25. Świerc A., Foit H., & Świerc S. (2013). Estimation of the inner surface temperature of the opaque building components in a transient state using Exodus method. Environmental engineering – through a young eye. Monographs Vol. 3, Białystok: Oficyna Wydawnicza Politechniki Białostockiej, 172–181.
  26. Świerc A., Świerc S., Foit H. & Koper P. (2014). Applying the Exodus method to calculate the set of impulse response functions of a wall. Energy and Buildings 69, 301–306.
    [CROSSREF]
  27. Świerc A. & Foit H. (2014) Sensitivity analysis of the proposed method for determining dynamic heat flux lost through the building envelope. Proceedings of the 9th International Conference “Environmental Engineering”. Scientific book No. 2232-M. Vilnius Gediminas Technical University.
  28. Trzeciakiewicz Z. at al. (2013) Handbook of Thermal Diagnostics of Buildings Vol 3 In situ diagnostics of cold sources as well as ventilation and air conditioning systems.Gliwice: Politechnika Śląska.
  29. PN-EN ISO 12569: 2004. Thermal performance of buildings and materials – Determination of specific airflow rate in buildings – Tracer gas dilution method, 2004. Polski Komitet Normalizacyjny.
XML PDF Share

FIGURES & TABLES

REFERENCES

  1. Directive 2010/31/EU of the European Parliament of the Council of 19 May 2010 on the energy performance of buildings (recast).
  2. Directive 2002/91/EC of the European Parliament of the Council of 16 December 2002 on the energy performance of buildings.
  3. PN-EN 15378:2009. Heating Systems In Buildings – Inspection Of Boilers And Heating Systems
  4. PN-EN 12831:2006. Heating Systems in Buildings-Mathod for Calculation of the Design Heat Load
  5. Rozporządzenie Ministra Infrastruktury dnia 6 listopada 2008r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej, Dz. U. Nr 201, poz.1240. (Regulation of the Polish Minister of Infrastructure Methodology for calculating the energy performance of building) (in Polish).
  6. Oschatz, B. (2006). Physikalische Bewertung vorgeschlagener Messverfahren zur energetischen Inspektion von Heizungsanlagen. Des Bundesministerium für Verkehr, Bau und Stadtentwicklung. Dresden.
  7. Donath, M. (2006). Analyse des Betriebsverhaltens von Heizungsanlagen bei der Wärmeversorgung von Gebäuden. Dissertation. Universität Rostock.
  8. Foit, H. & Szewczyk, M. (2011). Określanie charakterystyki cieplnej istniejącego budynku z zastosowaniem dwukrotnego pomiaru. (Determination of heat charakteristics of existing building using double measurement. Part 1, 2, 3). Ciepłownictwo Ogrzewnictwo Wentylacja, 1, 3, 5,
  9. Foit, H. & Szewczyk, M. (2011). Określanie zapotrze-bowania na ciepło końcowe budynku mieszkalnego na podstawie krótkotrwałego pomiaru. (Determination of heat demand of residential building based on brief measurement), Rynek Energii, 6.
  10. Foit, H. & Świerc, A. (2012). Wyznaczanie wymaganej mocy źródła ciepła na potrzeby diagnostyki cieplnej budynku mieszkalnego. (Measurement based determination of power demand of heat source for thermal diagnostics of dwelling houses), Rynek Energii, 5.
  11. Foit, H. (2006). Optymalizacja ochrony cieplnej budynku mieszkalnego, instalacji i źródła ciepła. (Optimization of thermal protection, installations, and heat source in a dwelling house), Zeszyty Naukowe Politechniki Śląskiej, Inżynieria Środowiska, z. 1717, Gliwice Wydawnictwo Politechniki Śląskiej.
  12. Foit H., Świerc A., & Szewczyk, M. (2013). Miarodajna temperatura zewnętrzna na potrzeby charakterystyki energetycznej budynku. (Equivalent external temperature for energy performance of buildings), Rynek Energii, 3.
  13. Foit, H. (2015). Wyznaczanie podstawowych wielkoś-ci w celu określenia charakterystyki energetycznej istniejącego budynku mieszkalnego z zastosowaniem krótkich pomiarów. Monografia (Determining the base sizes to obtain building’s thermal characteristics of existing residential building using method of brief measurements. Monograph) Gliwice: Politechnika Śląska.
  14. Foit, H. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 2. Diagnostyka in situ źródeł ciepła oraz instalacji grzewczych i ciepłej wody użytkowej. (Handbook of Thermal Diagnostics of Buildings Vol.2) Gliwice: Politechnika Śląska.
  15. Kaczmarczyk, J. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 4. Diagnostyka in situ środowiska wewnętrznego w budynkach. (Handbook of Thermal Diagnostics of Buildings Vol 4) Gliwice, Politechnika Śląska.
  16. Lubina P., & Nantka, M. (2009). Internal heat gains in relation to the dynamics of buildings heat requirements. ACEE Architecture, Civil Engineering, Environment 2(1), 137–142.
  17. Popiołek, Z. et al. (2013) Poradnik diagnostyki cieplnej budynków Tom 5. Kompleksowa diagnostyka cieplna in situ w praktyce. (Handbook of Thermal Diagnostics of Buildings Vol 5. Comprehensive thermal diagnostics in situ in practice.) Gliwice Politechnika Śląska.
  18. Popiołek Z., & Bartosz, D. (2015) Prognozowanie zużycia ciepła na cele grzewcze i wentylacyjne w budynku mieszkalnym. (Heat demand forecasting for heating and ventilation purposes in multi-family building), Rynek energii, 5.
  19. Specjał, A. et al. (2013). Poradnik diagnostyki cieplnej budynków Tom 6. Metodyka wyznaczania świadectwa charakterystyki energetycznej budynku na podstawie pomiarów. (Handbook of Thermal Diagnostics of Buildings Vol 6. Methodology for determining the energy performance of a building based on measurements) Gliwice: Politechnika Śląska.
  20. Specjał, A. (2012). Dokładność wyznaczania charakterystyki energetycznej budynków na podstawie krótkich pomiarów, (Accuracy of determining the energy performance of buildings based on short measurements) Rynek Energii, 6, 63–69.
  21. Specjał A. & Bartosz D. (2014) Metoda bilansowa wyznaczania sezonowego zapotrzebowania na ciepło na podstawie dwutygodniowych pomiarów zużycia ciepła w budynku (Balance method for determining the seasonal heat demand on the basis of two weeks heat consumption measurements in the building), INSTAL 12, 37–43.
  22. Świerc A. (2014) Wyznaczanie strat ciepła przez przenikanie istniejącego budynku mieszkalnego na potrzeby jego diagnostyki cieplnej (Estimation of transmission heat losses in residential buildings for their thermal diagnostics.) (PhD thesis, Silesian University of Technology). Poland, Gliwice.
  23. Świerc A., & Foit H. (2013) Evaluation of required heat source power in existing buildings based on short measurements. Engineering systems for Buildings. Proceedings of the 16th Conference for Junior Researchers “Science – Future of Lithuania”. Vilnius: Vilniaus Gedimino Technikos Universitetas. Aplinkos inzinerijos fakultetas, 140–145.
  24. Świerc A., & Foit H. (2013). Problems with Indication of Representative Area in Multi-Family Residential Building for Purpose of Thermal Diagnostics, Ciepłownictwo, Ogrzewnictwo, Wentylacja 44, 364–368
  25. Świerc A., Foit H., & Świerc S. (2013). Estimation of the inner surface temperature of the opaque building components in a transient state using Exodus method. Environmental engineering – through a young eye. Monographs Vol. 3, Białystok: Oficyna Wydawnicza Politechniki Białostockiej, 172–181.
  26. Świerc A., Świerc S., Foit H. & Koper P. (2014). Applying the Exodus method to calculate the set of impulse response functions of a wall. Energy and Buildings 69, 301–306.
    [CROSSREF]
  27. Świerc A. & Foit H. (2014) Sensitivity analysis of the proposed method for determining dynamic heat flux lost through the building envelope. Proceedings of the 9th International Conference “Environmental Engineering”. Scientific book No. 2232-M. Vilnius Gediminas Technical University.
  28. Trzeciakiewicz Z. at al. (2013) Handbook of Thermal Diagnostics of Buildings Vol 3 In situ diagnostics of cold sources as well as ventilation and air conditioning systems.Gliwice: Politechnika Śląska.
  29. PN-EN ISO 12569: 2004. Thermal performance of buildings and materials – Determination of specific airflow rate in buildings – Tracer gas dilution method, 2004. Polski Komitet Normalizacyjny.

EXTRA FILES

COMMENTS