MODELING OF ENERGY CROPS GASIFICATION BASED ON EXPERIMENTAL DATA

Publications

Share / Export Citation / Email / Print / Text size:

Architecture, Civil Engineering, Environment

Silesian University of Technology

Subject: Architecture, Civil Engineering, Engineering, Environmental

GET ALERTS

ISSN: 1899-0142

DESCRIPTION

16
Reader(s)
31
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 10 , ISSUE 3 (September 2017) > List of articles

MODELING OF ENERGY CROPS GASIFICATION BASED ON EXPERIMENTAL DATA

Anna SKOREK-OSIKOWSKA / Wojciech UCHMAN / Sebastian WERLE

Keywords :  Energy crops, Gasification, Modeling, Experimental research

Citation Information : Architecture, Civil Engineering, Environment. Volume 10, Issue 3, Pages 135-141, DOI: https://doi.org/10.21307/acee-2017-044

License : (BY-NC-ND 4.0)

Published Online: 28-August-2018

ARTICLE

ABSTRACT

The paper presents a mathematical model of the selected energy crops gasification. Firstly, the experimental study of the biomass gasification process using fixed-bed reactor was conducted. The highest calorific value was obtained from the gasification of Miscanthus x giganteus (3.84 MJ/m3n). Based on the experimental results, a model of the gasifier built in Aspen Plus was verified. The developed mathematical model of the gasification system properly reflects the processes occurring in the analyzed gasifier. The relative differences of the lower heating values from the model and experiment did not exceed 1%.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] Basu P. (2010). Biomass gasification and pyrolysis. Practical design and theory. Amsterdam: Elsevier Inc.

[2] Uchman W., & Werle S. (2016). The use of lowcalorific value gases in environmental protection engineering. Architecture Civil Engineering and Environment, 1(9), 127-132.

[3] Kalisz S., Pronobis M., & Baxter D. (2008). Co-firing of biomass waste-derived syngas in coal power boiler. Energy, 33, 1770-1778.

[4] Wilk M., Magdziarz A., Zajemska M. & Kuźnia M. (2014). Syngas as a reburning fuel for natural gas combustion. Chemical and Process Engineering, 35(2), 181-190.

[5] Uchman W., Job M., & Skorek-Osikowska A. (2016). The use of high moisture sewage sludge in the CHP unit integrated with biomass drying and gasification. Architecture, Civil Engineering and Environment, 3, 147-152.

[6] Kotowicz J., Sobolewski A., & Iluk T. (2013). Energetic analysis of a system integrated with biomass gasification. Energy, 52, 265-278.

[7] Skorek-Osikowska A., Bartela Ł., Kotowicz J., Sobolewski A., Iluk T., & Remiorz L. (2014). The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation. Energy, 67, 328-340.

[8] Werle S., Bisorca D., Katelbach-Woźniak A., Pogrzeba M., Krzyżak J., Ratman-Kłosińska I. & Burnete D. (2017). Phytoremediation as an effective method to remove heavy metals from contaminated area - TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops. Journal of the Energy Institute, 90, 408-417.

[9] Pogrzeba M., Rusinowski S., Sitko K., Krzyżak J., Skalska A., Małkowski E., Ciszek D., Werle S., McCalmont J.P., Mos M., & Kalaji H.M. (2017). Relationship between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs microbial inoculation. Environmental Pollution, 225, 163-174.

[10] Szczukowski S., Tworkowski J., Stolarski M., Kwiatkowski J., Krzyżaniak M., Lajszner W. & Graban Ł. (2012). Wieloletnie rośliny energetyczne (Perennial energy crops). Warszawa: Multico Oficyna Wydawnicza.

[11] Xue G., Kwapinska M., Kwapinski W., Czajka K.M., Kennedy J., & Leahy J.J. (2014). Impact of torrefaction on properties of Miscanthus x giganteus relevant to gasification. Fuel, 121, 189-197.

[12] Ge X., Xu F., Vasco-Correa J., & Li Y. (2016). Giant reed: A competitive energy crop in comparison with miscanthus. Renewable and Sustainable Energy Reviews, 54, 350-362.

[13] Michel R., Rapagna S., Burg P.,Mazziotti di Celso G., Courson C., Zimny T., & Gruber R. (2011). Steam gasification of Miscanthus x Giganteus with olivine as catalyst production of syngas and analysys of tars (IR, NMR and GC/MS). Biomass and Bioenergy, 35, 2650-2658.

[14] Michel R., Rapagna S., Di Marcello, M., Burg P., Matt M., Courson C. & Gruber R. (2011). Catalytic stean gasification of Miscanthus x Giganteus in fluidised bed reactor on olivine based catalyst. Fuel Processing Technology, 92, 1169-1177.

[15] Sattar A., Leeke G.A., Hornung A., & Wood J. (2014). Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass and Bioenergy, 69, 276-286.

[16] Howaniec N., & Smoliński A. (2011). Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas. International Journal of Hydrogen Energy, 36, 2038-2043.

[17] Smoliński A., Stańczyk K., & Howaniec N. (2010). Steam gasification of selected energy crops in a fixed bed reactor. Renewable Energy, 35, 397-404.

[18] Jayaraman K., & Gokalp I. (2015). Pyrolysis, combustion and gasification of Miscanthus and sewage sludge. Energy Conversion and Management, 89, 83-91.

[19] Nguyen T.L.T., & Hermansen J.E. (2015). Life cycle environmental performance of Miscanthus gasification versus other technologies for electricity production. Sustainable Energy Technologies and Assessments, 9, 81-94.

[20] Wilk M., & Magdziarz A. (2017). Hydrothermal carbonization, torrefaction and slow pyrolysis of miscanthus giganteus. Energy, in press, DOI: 10.1016/j.energy.2017.03.031.

[21] Rao A.D., & Francuz D.J. (2013). An evaluation of advanced combined cycles. Applied Energy, 102, 1178-1186.

[22] Magdziarz A., Wilk M., Gajek M., Nowak-Woźny D., Kopia A., Kalemba-Rec I., & Koziński J.A. (2016). Properties of ash generated during sewage sludge combustion: A multifaceted analysis. Energy, 113, 85-94.

[23] Uchman W., Werle S., & Skorek-Osikowska A. (2016). Pozyskiwanie paliwa gazowego z roślin energetycznych (Gaseous fuel production from energy crops). Materiały VI Konferencji Naukowo- Technicznej Energetyka Gazowa 2016, 1, 171-188.

[24] Aspen Plus. Retrieved from http://www.aspentech.com/products/engineering/aspe n-plus/

EXTRA FILES

COMMENTS