Local orthodontic force initiates widespread remodelling of the maxillary alveolar bone


Share / Export Citation / Email / Print / Text size:

Australasian Orthodontic Journal

Australian Society of Orthodontists

Subject: Dentistry, Orthodontics & Medicine


ISSN: 2207-7472
eISSN: 2207-7480





Volume / Issue / page

Volume 38 (2022)
Volume 37 (2021)
Volume 36 (2020)
Volume 35 (2019)
Volume 34 (2018)
Volume 33 (2017)
Volume 32 (2016)
Volume 31 (2015)
Related articles

VOLUME 36 , ISSUE 2 (November 2020) > List of articles

Local orthodontic force initiates widespread remodelling of the maxillary alveolar bone

Xinyi Gong / Xiangru Huang / Yiling Yang / Siru Zhou / Qinggang Dai * / Lingyong Jiang *

Citation Information : Australasian Orthodontic Journal. Volume 36, Issue 2, Pages 175-183, DOI: https://doi.org/10.21307/aoj-2020-020

License : (CC BY 4.0)

Published Online: 20-July-2021



Objectives: To clarify the effects of a local orthodontic force on alveolar bone by analysing bone remodelling in different regions of the maxilla during orthodontic tooth movement (OTM).

Methods: An OTM model was established in rats. Histological changes in the maxilla were analysed using TRAP staining, IHC staining for CTSK and haematoxylin and eosin (H and E) staining. The root bifurcation region of the alveolar bone of the first (M1), second (M2) and third (M3) molars were selected as the regions of interest (ROIs), which were further divided into a cervical and an apical level. Sequential fluorochrome labelling was performed to analyse bone deposition rates.

Results: The maxillary left first molars were moved mesially. TRAP staining and IHC staining for CTSK showed orthodontic force increased osteoclast numbers in all six ROIs at both the cervical and apical levels. H and E staining indicated elevated osteoblast numbers in the OTM group in all induced regions. Sequential fluorochrome labelling exhibited increased bone deposition rates around M1, M2 and M3 in the OTM group.

Conclusions: An orthodontic force applied to the first molar could initiate widespread remodelling of the maxillary alveolar bone, which was not restricted to the tension and pressure sites. This may revise the orthodontic biomechanical theory and provide new insights for clinical work.

Content not available PDF Share



1. Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018;34:207-14.

2. Baloul SS. Osteoclastogenesis and Osteogenesis during Tooth Movement. Front Oral Biol 2016;18:75-9.

3. Isola G, Matarese G, Cordasco G, Perillo L, Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol 2016;65:299-327.

4. Lilja E, Lindskog S, Hammarström L. Orthodontic forces and periodontal compression. Acta Odontologica Scandinavica 1981;39:367-78.

5. Dutra EH, Nanda R, Yadav S. Bone Response of Loaded Periodontal Ligament. Curr Osteoporos Rep 2016;14:280-3.

6. Katona TR, Paydar NH, Akay HU, Roberts WE. Stress analysis of bone modeling response to rat molar orthodontics. J Biomech 1995;28:27-38.

7. Yu JH, Huang HL, Liu CF, Wu J, Li YF, Tsai MT et al. Does Orthodontic Treatment Affect the Alveolar Bone Density? Medicine 2016;95:e3080.

8. Bumann A, Carvalho RS, Schwarzer CL, Yen EH. Collagen synthesis from human PDL cells following orthodontic tooth movement. Eur J Orthod 1997;19:29-37.

9. Kitaura H, Kimura K, Ishida M, Sugisawa H, Kohara H, Yoshimatsu M et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. Scientific World Journal 2014;2014:617032.

10. Wolff J. Das gesetz der transformation der knochen. A Hirshwald 1892;1:1-152.

11. Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care 2017;26.

12. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annual Rev Biomed Eng 2006;8:455- 98.

13. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 2004;19:1006-12.

14. Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep 2013;11:92-8.

15. Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT et al. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res 2002;17:661- 7.

16. Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 1983;31:3-9.

17. Tanne K, Nagataki T, Matsubara S, Kato J, Terada Y, Sibaguchi T et al. Association between mechanical stress and bone remodeling. J Osaka Univ Dent Sch 1990;30:64-71.

18. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010;285:25103-8.

19. Ren Y, Maltha JC, Kuijpers-Jagtman AM. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 2003;73:86-92.

20. Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G. The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 2008;43:740-7.

21. Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schüler C et al. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res 2014;29:693-704.

22. Dai Q, Zhou S, Zhang P, Ma X , Ha N, Yang X et al. Force-induced increased osteogenesis enables accelerated orthodontic tooth movement in ovariectomized rats. Sci Rep 2017;7:3906.

23. Tanaka M, Miyazawa K, Tabuchi M, Yabumoto T, Kadota M, Yoshizako M et al. Effect of Reveromycin A on experimental tooth movement in OPG-/- mice. J Dent Res 2012;91:771-6.

24. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 2009;30:4522-32.

25. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987;2:595-610.

26. Lu W, Zhang X, Firth F, Mei L, Yi J, Gong C et al. Sclerostin injection enhances orthodontic tooth movement in rats. Arch Oral Biol 2019;99:43-50.

27. Lilja E, Lindskog S, Hammarström L. Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol Scand 1984;42:1-11.

28. Tsai CY, Yang TK, Hsieh HY, Yang LY. Comparison of the effects of micro-osteoperforation and corticision on the rate of orthodontic tooth movement in rats. Angle Orthod 2016;86:558-64.

29. Yang CY, Jeon HH, Alshabab A, Lee YJ, Chung CH, Graves DT. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. Int J Oral Sci 2018;10:3.

30. Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 2004;74:3-15.

31. Meeran NA. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. J Orthod Sci 2012;1:2-10.

32. Mao Y, Wang L, Zhu Y, Liu Y, Dai H, Zhou J et al. Tension forceinduced bone formation in orthodontic tooth movement via modulation of the GSK-3beta/beta-catenin signaling pathway. J Mol Histol 2018;49:75-84.

33. Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 1999;24:371-9.

34. Verna C. Regional Acceleratory Phenomenon. Front Oral Biol 2015;18:28-35.

35. Lee W. Corticotomy for orthodontic tooth movement. J Korean Assoc Oral Maxillofac Surg 2018;44:251-8.