Do combined glucosamine sulfate and chondroitin sulfate supplements affect condylar remodelling during functional appliance therapy?


Share / Export Citation / Email / Print / Text size:

Australasian Orthodontic Journal

Australian Society of Orthodontists

Subject: Dentistry, Orthodontics & Medicine


ISSN: 2207-7472
eISSN: 2207-7480





Volume / Issue / page

Volume 38 (2022)
Volume 37 (2021)
Volume 36 (2020)
Volume 35 (2019)
Volume 34 (2018)
Volume 33 (2017)
Volume 32 (2016)
Volume 31 (2015)
Related articles

VOLUME 34 , ISSUE 1 (May 2018) > List of articles

Do combined glucosamine sulfate and chondroitin sulfate supplements affect condylar remodelling during functional appliance therapy?

Gosia Barley / Gang Shen / Mohammed Almuzian * / Alan Jones / Rema Oliver / Peter Petocz / William R. Walsh / M. Ali Darendeliler

Citation Information : Australasian Orthodontic Journal. Volume 34, Issue 1, Pages 27-35, DOI:

License : (CC BY 4.0)

Published Online: 20-July-2021



Objectives: The purpose of this study was to qualitatively and quantitatively analyse the effect of glucosamine sulfate and chondroitin sulfate supplements on condylar remodelling in conjunction with bite-jumping functional appliance therapy in rats.

Materials and methods: The study involved 140 three-week-old, female rats which were divided into a control group (CG), a supplementation group (SG), a functional appliance (bite-jumping) group (FG) and a bite-jumping appliance and supplement recipient group (FSG). The animals were sacrificed at Day 0, Day 7 and at Day 21 after appliance placement, as well as seven days following appliance removal. The condylar head from each animal was blindly scanned using micro-computed tomography (µCT). Qualitative evaluation and volumetric measurements of the condyles, including total condylar volume (TCoV), posterior condylar volume (PCoV), total cartilage volume (TCaV) and posterior cartilage volume (PCaV), were undertaken using VGStudioMax software.

Results: One hundred and thirty-five rats were analysed, some of which responded to the intervention with a protruded bite (Class III response) while others responded with a retruded bite (Class II response). The TCoV and PCoV of the CG decreased during the experimental period. The functional appliance alone and the combination of the functional appliance with the supplement had a significant effect on TCoV and PCoV over the intervention period (p < 0.01), peaking at Day 7. There was no statistically significant difference in TCaV between animals that experienced Class II and Class III bite responses at Days 21 and 28 (p > 0.05). However, at Day 21, the PCaV increased significantly in those animals which displayed a Class II bite response (p < 0.05). The shape of the condyles in FG and FSG varied significantly from that of the condyles in CG and SG.

Conclusion: Supplement therapy was found to enhance the normal biological response to functional appliance therapy in a rat model, particularly after the functional appliance was removed. Further research using an immuno-histochemical analysis of a modified bite-jumping appliance and improved food delivery is recommended.

Content not available PDF Share



1. Rabie AB, She TT, Hägg U: Functional appliance therapy accelerates and enhances condylar growth. Am J Orthod Dentofacial Orthop 2003;123:40-8.

2. Voudouris JC, Woodside DG, Altuna G, Angelopoulos G, Bourque PJ, Lacouture CY et al. Condyle-fossa modifications and muscle interactions during Herbst treatment, Part 2. Results and conclusions. Am J Orthod Dentofacial Orthop 2003;124:13-29.

3. Kimura M, Miyazawa K, Tabuchi M, Maeda H, Kameyama Y, Goto S. Bisphosphonate treatment increases the size of the mandibular condyle and normalizes growth of the mandibular ramus in osteoprotegerin-deficient mice. Calcif Tissue Int 2008;82:137-47.

4. Hoskins WE, Asling CW. Influence of growth hormone and thyroxine on endochondral osteogenesis in the mandibular condyle and proximal tibial epiphysis. J Dent Res 1977;56:509-17.

5. Gebhardt A, Pancherz H. The effect of anabolic steroids on mandibular growth. Am J Orthod Dentofacial Orthop 2003;123:435-40.

6. Fuentes MA, Opperman LA, Bellinger LL, Carlson DS, Hinton RJ. Regulation of cell proliferation in rat mandibular condylar cartilage in explant culture by insulin-like growth factor-1 and fibroblast growth factor-2. Arch Oral Biol 2002;47:643-54.

7. Eyre DR, Wu JJ. Collagen structure and cartilage matrix integrity. J Rheumatol Suppl. 1995;43:82-5.

8. Drovanti A, Bignamini AA, Rovati AL. Therapeutic activity of oral glucosamine sulphate in osteoarthrosis: a placebo-controlled doubleblind investigation. Clin Ther 1980;3:260-72.

9. Paroli E, Antonilli L, Biffoni M. A pharmacological approach to glycosaminoglycans. Drugs Exp Clin Res 1991;17:9-19.

10. Naguib Y. The joint health market. In: Nutraceuticals World 2003.

11. Lippiello L. Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress. Osteoarthritis cartilage 2003;11:335-42.

12. Fenton JI, Chlebek-Brown KA, Peters TL, Caron JP, Orth MW. Glucosamine HCl reduces equine articular cartialge degradation in explant culture. Osteoarthritis cartilage 2000;8:258-65.

13. Lippiello L, Woodward, J., Karpman, R., Hammad, T.A: In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop Relat Res 2000;381:229-40.

14. Chan PS, Caron JP, Rosa GJ, Orth MW. Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants. Osteoarthritis Cartilage 2005;13:387-94.

15. Largo R, Alvarez-Soria MA, Díez-Ortego I, Calvo E, SánchezPernaute O, Egido J et al. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis cartilage 2003, 11:290-8.

16. Piperno M, Reboul P, Hellio Le Graverand MP, Peschard MJ, Annefeld M, Richard M et al. Glucosamine sulfate modulates dysregulated activities of human osteoarthritic chondrocytes in vitro. Osteoarthritis cartilage 2000;8:207-12.

17. McCarthy G, O’Donovan J, Jones B, McAllister H, Seed M, Mooney C. Randomised double-blind, positive-controlled trial to assess the efficacy of glucosamine/chondroitin sulfate for the treatment of dogs with osteoarthritis. Vet J 2007;174:54-61.

18. Herrero-Beaumont G, Ivorra JA, Del Carmen Trabado M, Blanco FJ, Benito P, Martín-Mola E et al. Glucosamine sulfate in the treatment of knee osteoarthritis symptoms: a randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator. Arthritis Rheum 2007;56:555-67.

19. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New Eng J Med 2006;354:795-808.

20. Pavelká K, Gatterová J, Olejarová M, Machacek S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, doubleblind study. Arch Intern Med 2002;162:2113-23.

21. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 2001;357:251-6.

22. Rabie AB, Zhao Z, Shen G, Hägg EU, Dr O, Robinson W. Osteogenesis in the glenoid fossa in response to mandibular advancement. Am J Orthod Dentofacial Orthop 2001;119:390-400.

23. Tan AC. Effect of mandibular displacement on condylar cartilage remodelling in sprague dawley rats: a micro-structural analysis. Dissertation. Sydney: University of Sydney, 2008.

24. Kiliaridis S, Thilander B, Kjellberg H, Topouzelis N, Zafiriadis A. Effect of low masticatory function on condylar growth: a morphometric study in the rat. Am J Orthod Dentofacial Orthop 1999;116:121-5.

25. Kantomaa T, Tuominen M, Pirttiniemi P. Effect of mechanical forces on chondrocyte maturation and differentiation in the mandibular condyle of the rat. J Dent Res 1994;73:1150-6.

26. Hinton RJ, Carlson DS. Response of the mandibular joint to loss of incisal function in the rat. Acta Anat (Basel) 1986;125:145-51.

27. Shen G, Rabie AB, Zhao ZH, Kaluarachchi K. Forward deviation of the mandibular condyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen. Arch Oral Biol 2006;51:315-24.

28. Shen G, Zhao Z, Kaluarachchi K, Bakr Rabie A. Expression of type X collagen and capillary endothelium in condylar cartilage during osteogenic transition--a comparison between adaptive remodelling and natural growth. Eur J Orthod 2006;28:210-6.

29. Tang GH, Rabie AB, Hägg U. Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res 2004;83:434-8.

30. Fuentes MA, Opperman LA, Buschang P, Bellinger LL, Carlson DS, Hinton RJ. Lateral functional shift of the mandible: Part II. Effects on gene expression in condylar cartilage. Am J Orthod Dentofacial Orthop 2003;123:160-6.

31. McNamara JA Jr, Bryan FA. Long-term mandibular adaptations to protrusive function: an experimental study in Macaca Mulatta. Am J Orthod Dentofacial Orthop 1987;92:98-108.

32. Joho JP. The effects of extraoral low-pull traction to the mandibular dentition of Macaca mulatta. Am J Orthod 1973;64:555-77.

33. Beren J, Hill SL, Diener-West M, Rose NR. Effect of pre-loading oral glucosamine HCl/chondroitin sulfate/manganese ascorbate combination on experimental arthritis in rats. Exp Biol Med (Maywood) 2001;226:144-51.

34. Hiiemäe KM, Ardran GM. A cinefluorgraphic study of mandibular movement during feeding in the rat (rattus norvegicus). J Zoology 1968;154:139-54.