Development of anti-Jk3 associated with silenced Kidd antigen expression and a novel single nucleotide variant of the JK gene

Publications

Share / Export Citation / Email / Print / Text size:

Immunohematology

American National Red Cross

Subject: Medical Laboratory Technology

GET ALERTS SUBSCRIBE

ISSN: 0894-203X
eISSN: 1930-3955

DESCRIPTION

48
Reader(s)
59
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Archive
Volume 37 (2021)
Volume 36 (2020)
Volume 35 (2019)
Volume 34 (2018)
Volume 33 (2017)
Volume 32 (2016)
Volume 31 (2015)
Volume 30 (2014)
Volume 29 (2013)
Volume 28 (2012)
Volume 27 (2011)
Volume 26 (2010)
Volume 25 (2009)
Volume 24 (2008)
Volume 23 (2007)
Volume 22 (2006)
Volume 21 (2005)
Volume 20 (2004)
Volume 19 (2003)
Volume 18 (2002)
Volume 17 (2001)
Volume 16 (2000)
Volume 15 (1999)
Volume 14 (1998)
Volume 13 (1997)
Volume 12 (1996)
Volume 11 (1995)
Volume 10 (1994)
Volume 9 (1993)
Volume 8 (1992)
Volume 7 (1991)
Volume 6 (1990)
Volume 5 (1989)
Volume 4 (1988)
Volume 3 (1987)
Related articles

VOLUME 37 , ISSUE 3 (Sep 2021) > List of articles

Development of anti-Jk3 associated with silenced Kidd antigen expression and a novel single nucleotide variant of the JK gene

P.A. Manrai * / A.J. Siddon / K.M. Hager / J.E. Hendrickson / M.A. Keller / C.A. Tormey

Keywords : Kidd blood group, novel allele Kidd gene, alloimmunization

Citation Information : Immunohematology. Volume 37, Issue 3, Pages 109-112, DOI: https://doi.org/10.21307/immunohematology-2021-015

License : (Transfer of Copyright)

Published Online: 30-September-2021

ARTICLE

ABSTRACT

Anti-Jk3 is a rare alloantibody to a high-prevalence antigen primarily seen in individuals of Polynesian descent and is associated with a handful of well-established variants of the SLC14A1 gene. We report a case of the Jknull phenotype, associated with formation of anti-Jk3, in a patient of non-Polynesian descent. This patient, a 51-year-old woman self-described as of Jamaican and Scottish ancestry, presented to our hospital for oncologic care. The patient’s blood sample typed as blood group A, D+. All screening and panel reagent red blood cells showed reactivity, ranging from 2 to 4+; autocontrol and direct antiglobulin test were both negative. Antigen phenotyping revealed Jk(a–b–), leading to suspicion for anti-Jk3, which was subsequently confirmed by our immunohematology reference laboratory. Given her reported familial background, testing of the SLC14A1 gene was performed, revealing that the patient was heterozygous for the single nucleotide variant (SNV) at c.838G>A in exon 8 and therefore carries both JK*01 and JK*02 alleles that encode Jka and Jkb, respectively. However, the patient was found to be heterozygous for several additional SNVs: c.28G>A in exon 3; c.191G>A, c.226G>A, and c.303G>A in exon 4; and c.757T>C in exon 7. The patient’s Jk(b–) phenotype can be explained by coinheritance of c.838A with c.191G>A, which defines null allele JK*02N.09. Coinheritance of SNVs c.28G>A and c.838G with rare SNV c.757C that is predicted to cause a non-conservative amino acid change (p.S253P) likely accounts for the complete serologic absence of Jka and the ability to form anti-Jk3 in this case. This finding would represent a new JK*01 null allele. This evaluation illustrates the importance of genetic analysis in identifying the factors preventing a high-prevalence antigen from being expressed, particularly when discovered outside of an expected racial or ethnic group.

Graphical ABSTRACT

You don't have 'Full Text' access of this article.

Purchase Article Subscribe Journal Share