Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 10 , ISSUE 2 (June 2017) > List of articles


Aizat Azmi / Ahmad Amsyar Azman / Sallehuddin Ibrahim / Mohd Amri Md Yunus

Keywords : Nitrate,  Selective Membrane,  Planar Electromagnetic Sensor,  Review and Detection

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 10, Issue 2, Pages 223-261, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 04-February-2017 / Accepted: 15-April-2017 / Published Online: 01-June-2017



Strategies to facilitate detection enhancement in various methods of nitrate detection are presented in this paper. The main nitrate detection methods for the past 10 years will be reviewed according to their advantages and disadvantages, followed by a focus on the techniques on increasing detection capabilities. For each detection method, an investigation of the technique of improvement is carried out. The utilisation of advance material such as membranes, reduction agents etc. is also identified as the key aspect for system improvement. Many researchers in the field of potentiometry, electrochemical, and biosensors have focused on miniaturising their detection systems to enhance the capability of nitrate in-situ measurement. The performance of miniaturised sensor systems is comparable to that of conventional systems.

Content not available PDF Share



  1. World Health Organization, “Nitrate and Nitrite in Drinking Water,” 2011.
  2. K. Tirumalesh, “Simultaneous determination of bromide and nitrate in contaminated waters by ion chromatography using amperometry and absorbance detectors,” Talanta, vol. 74,no. 5, pp. 1428–1434, 2008.
  3. M. A. M. Yunus, S. Ibrahim, W. Ali, H. Altowayti, and G. P. San, “Selective Membrane for Detecting Nitrate E ased on Planar Electromagnetic Sensors Array,” in Control Conference (ASCC), Asian, 2015, no. 4.
  4. R. K. Mahajan, R. Kaur, H. Miyake, and H. Tsukube, “Zn(II) complex-based potentiometric sensors for selective determination of nitrate anion.,” Anal. Chim. Acta, vol. 584,no. 1, pp. 89–94, 2007.
  5. C. Wardak, “Solid contact nitrate ion-selective electrode based on ionic liquid with stable and reproducible potential,” Electroanalysis, vol. 26, no. 4, pp. 864–872, 2014.
  6. M. A. M. Yunus and S. C. Mukhopadhyay, “Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources,” IEEE Sens. J., vol. 11, no. 6,pp. 1440–1447, 2011.
  7. A. S. M. Nor, M. A. M. Yunus, S. W. Nawawi, and S. Ibrahim, “Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,” Proc. Int. Conf. Sens. Technol. ICST, pp. 693–698, 2013.
  8. T. K. Bera and J. Nagaraju, “Gold electrode sensors for Electrical Impedance Tomography (EIT) studies,” SAS 2011 - IEEE Sensors Appl. Symp. Proc., pp. 24–28, 2011.
  9. H. R. Lotfi Zadeh Zhad and R. Y. Lai, “Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate,” Anal. Chim.Acta, vol. 892, pp. 153–159, 2015.
  10. Y. Li, J. Sun, C. Bian, J. Tong, and S. Xia, “Procedia Engineering Electrodeposition of Copper Nano-clusters at a Platinum Microelectrode for Trace Nitrate Determination,” Procedia Eng., vol. 5, pp. 339–342, 2010.
  11. S. S. Hassan, “Ion-selective electrodes in organic functional group analysis: microdetermination of nitrates and nitramines with use of the iodide electrode.,” Talanta, vol. 23,no. 10, pp. 738–740, 1976.
  12. S. S. M. Hassan, H. E. M. Sayour, and S. S. Al-Mehrezi, “A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals,” Anal. Chim. Acta, vol. 581, no. 1, pp. 13–18, 2007.
  13. B. Schnetger and C. Lehners, “Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent,” Mar. Chem., vol. 160,pp. 91–98, 2014.
  14. M. A. Ferree and R. D. Shannon, “Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples,” Water Res., vol. 35, no. 1, pp. 327–332, 2001.
  15. A. Lanoul, T. Coleman, and S. A. Asher, “UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes.,” Anal. Chem., vol. 74, no. 6, pp. 1458–1461, 2002.
  16. D. Albanese, M. Di, and C. Alessio, “Screen printed biosensors for detection of nitrates in drinking water,” in 20th European Symposium on Computer Aided Process Engineering -ESCAPE20, 2010, vol. 28, pp. 283–288.
  17. R. Michalski and I. Kurzyca, “Determination of Nitrogen Species ( Nitrate , Nitrite and Ammonia Ions ) in Environmental Samples by Ion Chromatography,” Polish J. Environ. Stud.,vol. 15, no. 1, pp. 5–18, 2006.
  18. L. Zhang, M. Zhang, H. Ren, P. Pu, P. Kong, and H. Zhao, “Comparative investigation on soil nitrate-nitrogen and available potassium measurement capability by using solid-state and PVC ISE,” Comput. Electron. Agric., vol. 112, pp. 83–91, 2015.
  19. M. A. M. Yunus, S. Mukhopadhyay, and A. Punchihewa, “Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor,” 2011 Fifth Int. Conf. Sens. Technol., vol. 1, pp. 538–543, 2011.
  20. M. O. Mendoza, E. P. Ortega, O. A. De Fuentes, Y. Prokhorov, and J. G. Luna, “Chitosan / bentonite nanocomposite : preliminary studies of its potentiometric response to nitrate ions in water,” pp. 7–10, 2014.
  21. C. Li and L. Li, “Prediction of Nitrate and Chlorine in Soil Using Ion Selective Electrode,” in World Automation Congress (WAC), 2010, pp. 231–234.
  22. L. Nuñez, X. Cetó, M. I. Pividori, M. V. B. Zanoni, and M. del Valle, “Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters,” Microchem. J., vol. 110, pp. 273–279, 2013.
  23. T. A. Bendikov and T. C. Harmon, “A Sensitive Nitrate Ion-Selective Electrode An Analytical Laboratory Experiment,” vol. 82, no. 3, pp. 439–441, 2005.
  24. A. Calvo-lópez, E. Arasa-puig, M. Puyol, J. Manel, and J. Alonso-chamarro, “Analytica Chimica Acta Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions,” Anal. Chim. Acta, vol. 804,pp. 190–196, 2013.
  25. E. Andreoli, V. Annibaldi, D. a Rooney, K.-S. Liao, N. J. Alley, S. a Curran, and C. B. Breslin, “Electrochemical Conversion of Copper-Based Hierarchical Micro/Nanostructures to Copper Metal Nanoparticles and Their Testing in Nitrate Sensing.,” Electroanalysis, vol. 23, no.9, pp. 2164–2173, 2011.
  26. S. A. and S. Bhansali, “Development of Micro-Fluidic Nitrate-Selective Sensor Based On Polypyrrole Nanowires,” J. Chem. Inf. Model., vol. 53, pp. 1689–1699, 2013.
  27. F. Can, S. Korkut Ozoner, P. Ergenekon, and E. Erhan, “Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode,” Mater. Sci. Eng. C,vol. 32, no. 1, pp. 18–23, 2012.
  28. C. Li, Y Sun, J.Z Bian, “A Microfluidic Sensor Chip With Renewable In-Situ Copper Modified Microelectrode For Continuous Monitoring Of Nitrate,” in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), International, 2011, pp. 2279–2282.
  29. Y. Li, J. Sun, C. Bian, J. Tong, and S. Xia, “A Micro Electrochemical Sensor with Porous Copper- clusters for Total Nitrogen Determination in Freshwaters,” in Nano/Micro Engineered and Molecular Systems (NEMS), 2013, vol. 1, pp. 1–4.
  30. Y. Li, C. Bian, S. Xia, J. Sun, and J. Tong, “Micro electrochemical sensor with copper nanoclusters for nitrate determination in freshwaters,” Micro Nano Lett., vol. 7, no. 12, pp. 1197–1201, 2012.
  31. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, and Y. Komatsu, “Selective determination method for measurement of nitrite and nitrate in water samples using highperformance liquid chromatography with post-column photochemical reaction and chemiluminescence detection,” J. Chromatogr. A, vol. 1216, no. 15, pp. 3163–3167, 2009.
  32. C. Lopez-Moreno, I. V. Perez, and A. M. Urbano, “Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat,” Food Chem., vol. 194, pp. 687–694, 2016.
  33. M. R. Siddiqui, S. M. Wabaidur, Z. a. ALOthman, and M. Z. a. Rafiquee, “Rapid and sensitive method for analysis of nitrate in meat samples using ultra performance liquid chromatography–mass spectrometry,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol.151, pp. 861–866, 2015.
  34. P. Niedzielski, I. Kurzyca, and J. Siepak, “A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples,” Anal. Chim. Acta, vol. 577, no. 2, pp. 220–224, 2006.
  35. M. Akyüz and Ş. Ata, “Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection,” Talanta, vol. 79, no. 3, pp. 900–904, 2009.
  36. Y. Li, J. S. Whitaker, and C. L. McCarty, “Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water,” J. Chromatogr. A, vol. 1218, no. 3, pp. 476–483, 2011.
  37. Y. Zuo, C. Wang, and T. Van, “Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography,”Talanta, vol. 70, no. 2, pp. 281–285, 2006.
  38. A. Ayala, L. O. Leal, L. Ferrer, and V. Cerdà, “Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis,” Microchem. J., vol. 100, no. 1, pp. 55–60, 2012.
  39. M. Yaqoob, A. Nabi, and P. J. Worsfold, “Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection,” J. Chem. Soc. Pakistan, vol.35, no. 2, pp. 533–539, 2013.
  40. M. Yaqoob, B. Folgado Biot, A. Nabi, and P. J. Worsfold, “Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection.,”Luminescence, vol. 27, no. 5, pp. 419–25, 2011.
  41. S. Wang, K. Lin, N. Chen, D. Yuan, and J. Ma, “Talanta Automated determination of nitrate plus nitrite in aqueous samples with fl ow injection analysis using vanadium ( III )chloride as reductant,” Talanta, pp. 1–5, 2015.
  42. C. E. L. Pasquali, a. Gallego-Picó, P. F. Hernando, M. Velasco, and J. S. D. Alegría, “Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples,” Microchem. J., vol. 94, no. 1, pp. 79–82, 2010.
  43. C. E. López Pasquali, P. Fernández Hernando, and J. S. Durand Alegría,“Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis,” Anal. Chim. Acta, vol. 600, no. 1–2 SPEC. ISS., pp. 177–182, 2007.
  44. S. Feng, M. Zhang, Y. Huang, D. Yuan, and Y. Zhu, “Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell,” Talanta, vol. 117, pp. 456–462, 2013.
  45. P. S. Ellis, A. M. H. Shabani, B. S. Gentle, and I. D. McKelvie, “Field measurement of nitrate in marine and estuarine waters with a flow analysis system utilizing on-line zinc reduction,” Talanta, vol. 84, no. 1, pp. 98–103, 2011.
  46. A. D. Beaton, C. L. Cardwell, R. S. Thomas, V. J. Sieben, E. M. Waugh, P. J. Statham, M. C. Mowlem, and H. Morgan, “Lab-on-Chip Measurement of Nitrate and Nitrite for In Situ Analysis of Natural Waters,” 2012.
  47. N. Amini and I. McKelvie, “An enzymatic flow analysis method for the determination of phosphatidylcholine in sediment pore waters and extracts,” Talanta, vol. 66, no. 2 SPEC. ISS.,pp. 445–452, 2005.
  48. M. A. M. Yunus, S. C. Mukhopadhyay, and S. Ibrahim, “Planar Electromagnetic Sensor Based Estimation of Nitrate Contamination in Water Sources Using Independent Component Analysis,” IEEE Sens. J., vol. 12, no. 6, pp. 2024–2034, 2012.
  49. .A. S. M. Nor, M. Faramarzi, M. A. M. Yunus, and S. Ibrahim, “Nitrate and Sulfate Estimations in Water Sources Using a Planar Electromagnetic Sensor Array and Artificial Neural Network Method,” IEEE Sens. J., vol. 15, no. 1, pp. 497–504, 2015.
  50. M. A. M. Yunus and S. C. Mukhopadhyay, “Planar Electromagnetic Sensor for the Detection of Nitrate and Contamination in Natural Water Sources Using Electrochemical Impedance Spectroscopy,” in New Developments and Applications in Sensing Technology, 2011,pp. 39–63.
  51. M. A. M. Yunus and S. C. Mukhopadhyay, “Development of planar electromagnetic sensors for measurement and monitoring of environmental parameters,” Meas. Sci. Technol., vol.22, no. 2, p. 025107, 2011.
  52. X. Wang, Y. Wang, H. Leung, S. C. Mukhopadhyay, M. Tian, and J. Zhou, “Mechanism and Experiment of Planar Electrode Sensors in Water Pollutant Measurement,” IEEE Trans.Instrum. Meas., vol. 64, no. 2, pp. 516–523, 2015.
  53. K. G. Ong, J. Wang, R. S. Singh, L. G. Bachas, and C. a Grimes, “Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing.,” Biosens. Bioelectron., vol. 16, no. 4–5, pp. 305–12, 2001.
  54. M. C. Hofmann, F. Kensy, J. Büchs, W. Mokwa, and U. Schnakenberg, “Transponderbased sensor for monitoring electrical properties of biological cell solutions,” J. Biosci. Bioeng.,vol. 100, no. 2, pp. 172–177, 2005.
  55. S. Lakkis, R. Younes, Y. Alayli, and M. Sawan, “Review of recent trends in gas sensing technologies and their miniaturization potential,” Sens. Rev., vol. 34, no. 1, pp. 24–35, 2014.
  56. M. R. Mahmoudian, Y. Alias, W. J. Basirun, P. Mengwoi, F. J. Sheini, and M.Sookhakian, “A sensitive electrochemical nitrate sensor based on polypyrrole coated palladium nanoclusters,” J. Electroanal. Chem., vol. 751, pp. 30–36, 2015.
  57. M. Sohail, R. D. Marco, K. Lamb, and E. Bakker, “Thin layer coulometric determination of nitrate in fresh waters,” Anal. Chim. Acta, vol. 744, pp. 39–44, 2012.
  58. L. Yu, Q. Zhang, Q. Xu, D. Jin, G. Jin, K. Li, and X. Hu, “Electrochemical detection of nitrate in PM 2.5 with a copper-modified carbon fi ber micro-disk electrode,” Talanta, vol. 143,pp. 245–253, 2015.
  59. T. Madasamy, M. Pandiaraj, and M. Balamurugan, “Biosensors and Bioelectronics Copper , zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate,” Biosens. Bioelectron., vol. 52, no. 3,pp. 209–215, 2014.
  60. P. Ciosek and W. Wróblewski, “Potentiometric Electronic Tongues for Foodstuff and Biosample Recognition—An Overview,” Sensors, vol. 11, no. 12, pp. 4688–4701, 2011.
  61. B. Paczosa-bator, L. Cabaj, M. Raś, B. Baś, and R. Piech, “Potentiometric Sensor Platform Based on a Carbon Black Modified Electrodes,” Int. J. Electrochem. Sci., vol. 9, pp.2816–2823, 2014.
  62. Z. Chang, Y. Zhu, L. Zhang, and S. Du, “Measurement Experiment and Mathematical Model of Nitrate Ion Selective Electrode,” in Third International Conference on Instrumentation,Measurement, Computer, Communication and Control, 2013, pp. 48–52.
  63. L. T. Duarte, C. Jutten, and S. Moussaoui, “A Bayesian Nonlinear Source Separation Method for Smart Ion-Selective Electrode Arrays,” IEEE Sens. J., vol. 9, no. 12, pp. 1763–1771,2009.
  64. E. Santos, M. C. B. S. M. Montenegro, C. Couto, A. N. Araújo, M. F. Pimentel, and V. L. D. Silva, “Sequential injection analysis of chloride and nitrate in waters with improved accuracy using potentiometric detection,” Talanta, vol. 63, no. 3, pp. 721–727, 2004.
  65. E. Lindner and B. D. Pendley, “A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial,” Anal. Chim. Acta, vol. 762, pp. 1–13, 2013.
  66. A. M. Stortini, L. M. Moretto, A. Mardegan, M. Ongaro, and P. Ugo, “Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor,” Sensors Actuators B Chem., vol. 207, pp. 186–192, 2015.
  67. T. Öznülüer, B. Özdurak, and H. Öztürk Doğan, “Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media,” J. Electroanal. Chem., vol. 699, pp. 1–5,2013.
  68. I. S. da Silva, W. R. de Araujo, T. R. L. C. Paixão, and L. Angnes, “Direct nitrate sensing in water using an array of copper-microelectrodes from flat flexible cables,” Sensors Actuators B Chem., vol. 188, pp. 94–98, 2013.
  69. K. Soropogui, M. Sigaud, and O. Vittori, “Alert Electrodes for Continuous Monitoring of Nitrate Ions in Natural Water,” Electroanalysis, vol. 18, no. 23, pp. 2354–2360, 2006.
  70. M. J. A. Shiddiky, M. S. Won, and Y. B. Shim, “Simultaneous analysis of nitrate and nitrite in a microfluidic device with a Cu-complex-modified electrode,” Electrophoresis, vol. 27,no. 22, pp. 4545–4554, 2006.
  71. T. R. L. C. Paixão, J. L. Cardoso, and M. Bertotti, “Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode,” Talanta, vol.71, no. 1, pp. 186–191, 2007.
  72. W. Ren, S. Mura, and J. M. K. Irudayaraj, “Modified graphene oxide sensors for ultrasensitive detection of nitrate ions in water,” Talanta, vol. 143, pp. 234–239, 2015.
  73. W. Xuejiang, S. V. Dzyadevych, J. M. Chovelon, N. Jaffrezic, C. Ling, X. Siqing, and Z. Jianfu, “Conductometric nitrate biosensor based on methyl viologen / Nafion ® / nitrate reductase interdigitated electrodes,” vol. 69, pp. 450–455, 2006.
  74. Z. Zhang, S. Xia, D. Leonard, N. Jaffrezic-Renault, J. Zhang, F. Bessueille, Y. Goepfert, X. Wang, L. Chen, Z. Zhu, J. Zhao, M. G. Almeida, and C. M. Silveira, “A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane.,” Biosens. Bioelectron., vol. 24, no. 6, pp. 1574–9, 2009.
  75. D. Kirstein, L. Kirstein, F. Scheller, H. Borcherding, and J. Ronnenberg, “Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase,” J. Electroanal. Chem.,vol. 474, pp. 43–51, 1999.
  76. M. A. M. Yunus, V. Kasturi, S. C. Mukhopadhyay, and G. Sen Gupta, “Sheep Skin Property Estimation Using a Low-Cost Planar Sensor,” no. May, pp. 5–7, 2009.
  77. C. Doyle, S. Campus, and C. Kerry, “A Cost-Effective and Accurate Electrical Impedance Measurement Circuit Design for Sensors,” Int. J. Sens. Intell. Syst., vol. 9, no. 2, pp. 509–525,2016.
  78. A. Larbi, B. Djedou, L. Bennacer, and B. M. Salah, “Towards a New Gas Sensor Microsystem Using Electroactive Polymers Thin Films,” Int. J. Sens. Intell. Syst., vol. 2, no. 3,pp. 448–462, 2009.
  79. R. H. Bari, S. B. Patil, and A. R. Bari, “Synthesis , Characterization and Gas Sensing Performance Of Sol-Gel Prepared Nanocrystalline Sno 2 Thin Films,” Int. J. Sens. Intell. Syst.,vol. 7, no. 2, pp. 610–629, 2014.