Nanorobot Movement: Challenges and Biologically inspired solutions


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 1 , ISSUE 1 (March 2008) > List of articles

Nanorobot Movement: Challenges and Biologically inspired solutions

N. N. Sharma * / R.K. Mittal

Keywords : Nanorobots, Nano-Swimmers, Diffusion, nanoparticle; Brownian motion; System Modelling

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 1, Issue 1, Pages 87-109, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 13-December-2017



Nanorobotics is the technology of creating machines or robots of the size of few hundred nanometres and below consisting of components of nanoscale or molecular size. There is an all around development in nanotechnology towards realization of nanorobots in the last two decades. In the present work, the compilation of advancement in nanotechnology in context to nanorobots is done. The challenges and issues in movement of a nanorobot and innovations present in nature to overcome the difficulties in moving at nano-size regimes are discussed. The efficiency aspect in context to artificial nanorobot is also presented.

Content not available PDF Share



[1] A.A.G. Requicha, “Nanorobots, NEMS and Nanoassembly”, Proceedings IEEE, Vol. 91, no. 11, pp 1922-1933 (2003).
[2] J. A. Stroscio and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope,” Science, vol. 254, no. 5036, pp. 1319–1326, (1991).
[3] R. A. Freitas Jr., “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell”; Artificial Cells, Blood Design, and Immobility, Biotech., vol. 26, pp 441-430 (1998).
[4] B. Behkam and M. Sitti, “Towards Hybrid Swimming Microrobots: Bacteria Assisted Propulsion of Polystyrene Beads”, in Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006, pp 2421-2424 (2006).
[5] A. Cavalcanti and R. A. Freitas Jr., “Nanorobotics Control Design: A Collective Behavior Approach for Medicine”, IEEE Tr. Nanobioscience, vol. 4, no. 2, pp 133-140, (2005).
[6] M. Sitti, “Micro- and Nano-Scale Robotics”, Proceedings of the 2004 American Control Conference, Massachusetts, June 30 -July 2, 2004, pp 1-8 (2004).
[7] M. Siegel, “Smart Sensors and Small Robots”, Proceedings. IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, May 21-23, 2001 pp 303-308 (2001).
[8] T. Fukuda, F. Arai and L. Dong, “Assembly of Nanodevices with Carbon Nanotubes through Nanorobotic Manipulations”, Proceedings IEEE, vol. 91, No. 11, 2003, pp 1803-1818 (2003).
[9] Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, "Directional Control in Thermally Driven Single-Molecule Nanocars", Nano Lett., vol. 5, 2330-2334, (2005).
[10] T.R. Kelly, H. De Silva and R.A. Silva, “Unidirectional Rotary Motion in a MolecularSystem”, Nature (London), vol. 401, Issue 6749, pp 150-152, (1999).
[11] N. Koumura, R.W. Zijlstra, R.A. van Delden, N Harada and B.L. Feringa, “Light-Driven Monodirectional Molecular Motor”, Nature, vol. 401, 1999, pp 152-155 (1999).
[12] T. Harada and K. Yoshikawa, “Mode Switching of an Optical Motor”, Appl. Phy. Lett., vol. 81, 4850-4852, (2002).
[13] R.K. Soong, George D. Bachand, Hercules P. Neves, Anatoli G. Olkhovets, Harold G. Craighead and Carlo D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor”, Science, vol. 290, no. 5496, 1555-1558, (2000).
[14] R. Dreyfus, J. Baury, M.L. Roper, M.Fermigiev, H.A. Stone and J, Bibette, “Microscopic artificial swimmers”, Nature, vol. 437, 862, (2005).
[15] Chih-Ming Ho, “Fluidics- The Link between Micro and Nano Sciences and Technologies”, 0-7803-5998-4/01@ 2001 IEEE, pp 375-384, (2001).
[16] M. Nosonovsky and B. Bhushan, “Scale Effect in Friction during Multiple Asperity Contact,” ASME J. Tribol. Vol. 127, pp 37-46, (2005).
[17] N.N. Sharma, “Modeling and Simulation of Brownian motion attributable to Thermal Agitation for Predicting Dynamics of Nanorobots”, Ph.D. Thesis, BITS, Pilani, India (2004).
[18] A. Cavalcanti T. H. Bijan, S. Hwee and C. Liaw, “Nanorobot Communication Techniques: A Comprehensive Tutorial”, IEEE ICARCV 2006 International Conference on Control, Automation, Robotics and Vision, (2006).
[19] A. S. G. Curtis, Comment on “Nanorobotics Control Design: A Collective Behavior Approach for Medicine” IEEE Tr. On Nanobioscience, vol. 4, no. 2, pp 201-202, (2005).
[20] E. Gauger and H. Stark, “Numerical study of a microscopic artificial swimmer”, Phy. Rev. E, vol. 74, pp 021907 (1-10), (2006).
[21] E.M. Purcell, “Life at low Reynolds Number”, Am. Journal of Physics, vol. 45, no. 1, pp 3-11, (1977).
[22] K. Kruse, J.F. Joanny, F. Julicher, J. Prost and K. Sekimoto, “Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments”, Phy. Rev. Lett, vol. 92, 2004, pp 078101(1-10) (2004).
[23] F. Julicher, A. Ajdari and J. Prost, ”Modeling Molecular Motors”, Rev. Mod. Phy. Vol 69, 1997, pp 1269-1281 (1997).
[24] J. Lighthill, “Flagellar Hydrodynamics”, SIAM Rev. vol. 18, 161, (1976).
[25] A.M. Brower, C. Frochst, F.C. Gatti, D.A. Leigh, L. Mottier, F. Paolucci, S. Roffio and G.W.H. Wurpel, “Photoinduction of fast, Reversible, Translational motion in a hydrogen-bonded molecular Shuttle”, Science, Vol. 291, pp 2124-2128, Mar. (2001).
[26] B.L. Feringa, “In Control of Motion: From Molecular Switches to Molecular Motors”, Acc. Chem. Res., Vol. 34, no. 6, pp 504-513, June (2001).
[27] B.L. Feringa, N. Koumura, R.A. van Delden and M.K.J. ter Wiel, “Light Driven Molecular Switches and Motors”, App. Phys. A, vol. 75, pp 301-308, (2002).
[28] C.H. Wiggins and R.E. Goldstein, “Flexive and Propulsive Dynamics of Elastica at Low Reynolds Number”, Phy. Rev. Lett., vol. 80, 1998, pp 3879-3882 (1998).
[29] S. Camalet, F. Julicher and J. Prost, “Self-Organized Beating and Swimming of Internally Driven Filaments”, Phy Rev Lett, vol. 82, 1999, pp 1590-1593 (1999).
[30] C.W. Wolgemuth, T.R. Powers and R.E. Goldstein, Phy. Rev. Lett. Vol. 84, 1623, (2000).
[31] A. Cavalcanti T. H.ogg and B. Shirinzadeh, “Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number”, IEEE MHS 2006 International Symposium on Micro-NanoMechatronics and Human Science, 2006, pp 226-231, (2006).
[32] B. W. Podaima, T. Vaseeharan, and Richard Gordon, “Microscopic dynamics of cytobots” CCECE 2004 - CCGEI 2004, Niagara Falls, May 2004, pp 1527-1532, (2004).
[33] D. Brey, Cell Movements: From Molecules to Motility, 2nd Ed., Garland Publishing Inc., NY, (2001).
[34] J.L.L. Higdon, “A hydrodynamic analysis of flagellar propulsion” J. Fluid Mech. Vol. 90, 685, (1979).
[35] M.J. Kim and T.R. Powers, “Hydrodynamic interactions between rotating helices”, Phy. Rev. E, 69, 061910, (2004).
[36] T.R. Powers, “Role of body rotation in bacterial flagellar bundling”, Phy Rev E, vol. 65, 040903 (R), (2002).
[37] T.M. Squires and S.R. Quake, “Microfluidics: Fluid Physics at the nanoliter scale”, Review of Modern Physics, American Phy. Soc., vol. 77, no. 3 pp 977-1026. (2005)
[38] N.N. Sharma, M. Ganesh and R.K. Mittal, “Non-Brownian Motion of Nanoparticle: An Impact Process Model”, IEEE Tr. Nanotechnology, vol. 3, no. 1, pp 180-186, (2004).
[39] N.N. Sharma, M. Ganesh and R.K. Mittal, “Nano-Electromechanical System Impact Spectrum Modeling and Clubbing of Structural Properties”, IE (I) Journal-MC, Vol. 85, pp 188-193, Jan. (2005).
[40] N.N. Sharma and R.K. Mittal, “Brownian motion model of Nanoparticle Considering Non-Rigidity of Matter-A systems Modeling Approach”, IEEE Tr. Nanotechnology, vol. 4, no. 2, pp 180-186, (2005).
[41] N.N. Sharma and R.K. Mittal, “Non-Rigidity: Vital Link between Dynamics of Nanoparticle and Biospecies” invited talk in III Int. Conference on Solid State to Biophysics, 24 June – 1 July, Dubrovnik, (2006).
[42] N.N. Sharma and R.K. Mittal, “Brownian Motion of 1-DOF Nanorobot”, in Proceedings of International Conference on Emerging Mechanical Technology-Micro to Nano, EMTM2N-2007, 16-18 Feb., BITS, Pilani, 2007, pp 35-38, (2007).
[43] Niti Nipun Sharma, “Radiation model for Nanoparticle:extension of classical Brownian motion”, Int. J. Nanoparticle Research, Springer, doi 10.1007/s11051-007-9256-0, June (2007).
[44] J.N.Israelachvilli, Intermolecular and Surface Forces, Academic Press, 1992.
[45] Michelle L. Gee, Patricia M. McGuiggan, and Jacob N. Israelachvili and Andrew M. Homola, “Liquidlike to Solidlike Transition of Molecularly Thin Films under Shear”, Journal of Chem. Phy., vol. 93, no. 3, pp.1895-1906 (1990)
[46] B. Bhusan., Introduction to Tribology, Wiley, NY, 2002.
[47] B. Bhusan, and M. Nosonovsky, “Scale Effect in friction using Strain Gradient Plasticity and Dislocation-Assisted Sliding”, Acta Mater, vol. 51, 2003, pp 4331-4345 (2003).
[48] F.P. Bowden and D. Tabor, The friction and Lubrication of Solids, Oxford, Claredon, 1950.
[49] M. Nosonovsky, “Size, Load and Velocity effect in Friction at micro/nanoscale”, in Proc. Ont. Conf. Emerging Mechanical Technology Macro to Nano, EMTM2N-2007, 16-18 Feb. 2007, BITS, Pilani, India, (ed. R.K. Mittal, N.N. Sharma), Research Publishing Services, Chennai, 2007, (2007).
[50] S. Chandrasekhar, “Brownian Motion, Dynamical Friction and Stellar Dynamics”, Rev. Mod. Phy., vol. 21, no. 3, 1949, pp 383-388 (1949).
[51] M.L. Roukes, “Nano Electromechanical Systems” in Tech. Digest of 2000 Solid-State Sensor and Actuator Workshop, Hilton Isl., SC, 6/4-8/2000, pp 1-10, (2000).
[52] Z. Cui and C. Gu, “Nanofabrication Challenges for NEMS”, in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 18 - 21, (2006).
[53] Z. ChinaIgor and G. Neizvestny, “Trends in Development of Modern Silicon Nanoelectronics”, 7th Int. Siberian Workshop and Tutorials EDM'2006, JULY 1-5, 2006, ERLAGOL. ISSN 1815-3712 ISBN 5-7782-0646-1 (2006).
[54] T. Gupta and A. H. Jayatissa, “Recent Advances in Nanotechnology: Key Issues & Potential Problem Areas”, 0-7803-7976-4/031$17.00 02003 IEEE, pp 469-472 (2003).
[55] Chun-Yen Chang, “The Highlights in the Nano World”, Proc. IEEE, vol. 91, no. 11, 2003, pp 1756-1764 (2003).
[56] R. Chau (Plenary Talk), “Silicon Nanotechnologies and Emerging Non-Silicon Nanoelectronics”,1-4244-0161-5/06/$20.00 ©2006 IEEE (2006)
[57] P. Thakur and N.N. Sharma, “CNTFET: A State of Art Review”, in Proc. 2nd ISSS conference on MEMS, Microsensors, Smart Materials & Structures, jointly organized by CEERI, Pilani and BITS, Pilani, India, 16-18 Nov. 2007 (2007).
[58] S. Iijima, “Helical microtubules of graphite carbon”, Nature, vol. 354, pp 56-58, (1991).
[59] P. Kim and C.M. Lieber, “Nanotube nanotweezers”, Science, vol. 286, pp 2148-2150, 1999.
[60] J. Cumings and A. Zettl, “Low friction nanoscale linear bearing realized from multiwall carbon nanotubes”, Science, vol. 289, pp 602-604, (2000).
[61] J. Cumings, P.G. Collins and A. Zettl, “Peeling and Sharpening Multiwall Carbon Nanotubes”, Nature, vol. 406, pp 586, 2000.
[62] A.P. Davis, “Synthetic Molecular Motors”, Nature, vol. 401, pp 120-121 (1999).
[63] W.R. Browne and B.L. Feringa, “Making molecular machines work”, Nature Nanotechnology, vol. 1, pp 25-35 (2006).
[64] A.M. Schoevaars, W. Kruizinga, R.W.J. Zijlstra, N. Veldman, A.L. Spek and B.L. Feringa, “Towards a switchable molecular rotor”, Journal Org. Chem., vol. 62, pp 4943-4948 (1997).
[65] J. Clayden and J.H. Pink, “Concerted Rotation in Tertiary aromatic Amide: Towards a simple molecular gear”, Angew. Chem. Int. Edn. Engl., vol. 37, pp 1937-1939 (1998).
[66] N.P.M. Huck, W.F. Jager, B. de Lange and B.L. Feringa, “Dynamic control and Amplification of Molecular Chirality by Circularly Polarized Light”, Science, vol. 273, 1686-1688 (1996).
[67] S.A. Bissell, E. Cordova, A.E. Kaifer, and J.F. Stoddart, “A Chemically and Electrochemically switchable Moleculer Shuttle”, Nature, vol. 369, pp 133-137, (1994).
[68] T.C. Beddard and J.S. Moore, “Design and Synthesis of a Molecular Turnstile”, Journal Am. Chem. Soc., vol. 117, pp 10662-10671 (1995).
[69] T.R. Kelly, I. Tellitu and J.P. Sestelo, “New Molecular Devices: In Search of Molecular Ratchets”, Journal Org. Chem., vol. 63, pp 3655-3665 (1998).
[70] J.D. Badjic, V. Balzani, A. Credi, S. Silvi and J.F. Stoddart, “A Molecular Elevator”, Science, vol. 303, pp 1845-1849, (2001).
[71] J.D. Badjic et al., “Operating Molecular Elevators”, Journal Am. Chem. Soc., vol. 128, pp 1489-1499, (2006).
[72] J.K. Gimzewski et al., “Rotation of a single molecule within a supramolecular bearing”, Science, vol. 281, pp 531-533, 1998.
[73] V. Balzani, M. Gomez-Lopez and J.F. Stoddart, “Molecular Machines”, Acc. Chem. Res., vol. 31, pp 405-414, (1998).
[74] J.P. Sauvage, “Transition metal-containing rotaxanes and catenanes in motion toward molecular machine and motors”, Acc.. Chem. Res., vol. 31, pp 611-619 (1998).
[75] T. Muraoka, K. Kinbarra, Y. Kobayashi and T. Aida, “Light driven open-close motion of chiral molecular scissors”, Journal Am. Chem. Soc., vol. 125, pp 5612-5613 (2003).
[76] T. Muraoka, K. Kinbarra and T. Aida, “Mechanical Twisting of a guest by a photoresponsive host”, Nature, vol. 440, pp 512-515 (2006).
[77] H. W. Kroto, A.W. Allaf and S.P. Balm, ”C60: Buckminsterfullerene”, Nature, vol. 318, pp 162-163 (1985).
[78] J. F. Joanny, F. Julicher, and J. Prost, “Motion of an Adhesive Gel in a Swelling Gradient: A Mechanism for Cell Locomotion”, Phy. Rev. Lett., vol. 90, no. 16, pp 168102 (1-4) (2003).
[79] R.D. Astumian, “Making Molecules into motors”, Sci. Am., vol. 285, pp 45-51 (2001).
[80] R.T. Abrahm, R.S. Tibbetts, “Cell Biology: Guiding ATM to broken DNA”, Science, vol. 308, pp 510-511, (2005).