RESEARCH ON CAMERA-BASED HUMAN BODY TRACKING USING IMPROVED CAM-SHIFT ALGORITHM

Publications

Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic

GET ALERTS

eISSN: 1178-5608

DESCRIPTION

16
Reader(s)
26
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 8 , ISSUE 2 (June 2015) > List of articles

RESEARCH ON CAMERA-BASED HUMAN BODY TRACKING USING IMPROVED CAM-SHIFT ALGORITHM

Jiude Li

Keywords : Human body tracking, motion detection, Cam-shift tracking, motion parameter estimation.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 8, Issue 2, Pages 1,104-1,122, DOI: https://doi.org/10.21307/ijssis-2017-798

License : (CC BY-NC-ND 4.0)

Received Date : 31-January-2015 / Accepted: 10-April-2015 / Published Online: 01-June-2015

ARTICLE

ABSTRACT

Camera-based human body detection and tracking is an important research subject of computer vision, which has a widely used in the field of military and civil. In this paper, we focus on the technology of human body tracking based on improved camshaft algorithm. Firstly, we introduce some common image noise reduction algorithms. By combination the frame difference and background subtraction methods, an improved moving target detection algorithm is proposed, by which the whole region of target can be detected. Then, with the analysis of particle filtering and traditional Cam-shift algorithm, we introduce a new human body tracking method that is able to choose the target automatically due to the detection result. On the basis of the detection and tracking results, the algorithm of motion parameter estimation is analyzed. Finally, a set of human body detection and tracking experiments are designed to demonstrate the effectiveness of the proposed algorithms.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

[1] A. Kyme, S. Se, S. Meikle, G. Angelis, W. Ryder, K. Popovic, D. Yatigammana and R.
Fulton. “Markerless Motion Tracking of Awake Animals in Positron Emission Tomography”,
IEEE Transactions on Medical Imaging, 2014, 33(11): 2180 - 2190, doi: 10.1109/TMI.2014.
2332821.
[2] P. J. Noonan, J. M. Anton-Rodriguez, T. F. Cootes, W. A. Hallett and R. Hinz. “Multiple
target marker tracking for real-time, accurate, and robust rigid body motion tracking of the head for brain PET”, 2013 IEEE Nuclear Science Symposium and Medical Imaging
Conference (NSS/MIC), 2013: 1 - 6, doi: 10.1109/NSSMIC.2013.6829268.
[3] R. Krishnan and B. Natarajan. “Two-Stage Approach for Detection and Reduction of Motion
Artifacts in Photoplethysmographic Data”, IEEE Transactions on Biomedical Engineering,
2010, 57(8): 1867 - 1876, doi: 10.1109/TBME.2009.2039568.
[4] A. Heinrich, G. Di, D. Znamenskiy, J. P. Vink and G. de Haan. “Robust and Sensitive Video
Motion Detection for Sleep Analysis”, IEEE Journal of Biomedical and Health Informatics,
2014, 18(3): 790 - 798, doi: 10.1109/JBHI.2013.2282829.
[5] R. Col. A. Lipton and T. Kanade. “A System for video surveillance and monitoring: VSAM
final report”, Carnegie Melon University, Pittsburgh, America, 2000.
[6] D. S. Lee. “Effective Gaussian mixture learning for video background subtraction”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827- 832, doi:
10.1109/TPAMI.2005.102.
[7] Joaquim de Mira Jr., Hugo Vieira Neto, Eduardo B. Neves, Fábio K. Schneider,Biometricoriented
Iris Identification Based on Mathematical Morphology, Journal of Signal Processing
Systems, 80(2):181-195, 2015..
[8] K. Xiangui, M. C. Stamm, P. Anjie and K. J. R. Liu. “Robust Median Filtering Forensics
Using an Autoregressive Model”, IEEE Transactions on Information Forensics and Security,
2013, 8(9): 1456 -1468, doi: 10.1109/TIFS.2013.2273394.
[9] C. S. Regazzoni and A. Teschioni. “A new approach to vector median filtering based on
space filling curves”, IEEE Transactions on Image Processing, 1997, 6(7): 1025 -1037: doi:
10.1109/83.597277.
[10] D. Barash and D. Comaniciu. “Meanshift clustering for DNA microarray analysis”, IEEE
Computational Systems Bioinformatics Conference, 2004: 578 - 579, doi:
10.1109/CSB.2004.1332503.
[11] S. Yamada, K. Chomsuwan, S.C. Mukhopadhyay, M. Iwahara, M. Kakikawa and I.
Nagano, “Detection of Magnetic Fluid Volume Density with a GMR Sensor”, Journal of
Magnetics Society of Japan, Vol. 31, No. 2, pp. 44-47, 2007.
[12] D. Kai, J. Yongfeng, J. Yinli, L. Gang, L. Yanyan Li and Q. Shenglong. “Object tracking
based on improved Mean-Shift and SIFT”, International Conference on Consumer Electronics,
Communications and Networks, 2012: 2716 - 2719, doi: 10.1109/ CECNet.2012.6201691.
[13] P. Hidayatullah and H. Konik. “CAMSHIFT improvement on multi-hue and multi-object
tracking”, 2011 International Conference on Electrical Engineering and Informatics, 2011: 1-
6, doi: 10.1109/ ICEEI.2011.6021825.
[14] S.C. Mukhopadhyay, K. Chomsuwan, C. Gooneratne and S. Yamada, “A Novel Needle-
Type SV-GMR Sensor for Biomedical Applications”, IEEE Sensors Journal, Vol. 7, No. 3, pp.
401-408, March 2007.
[15] Y. Shujun, C. Xiaodong, W. Sen, H. Zhihai , W. Yi and Y. Daoyin. “Cam-shift algorithm
-based moving target recognition and tracking system”, 2012 IEEE International Conference
on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS),
2012: 181 - 185, doi: 10.1109/VECIMS. 2012.6273211.
[16] Huang-Nan Huang, Shuo-Tsung Chen, Muh-Shi Lin, Woon-Man Kung, Chih-Yu
Hsu,Optimization-Based Embedding for Wavelet-Domain Audio Watermarking, Journal of
Signal Processing Systems,80(2): 197-208, 2015.
[17] N. K. Suryadevara and S. C. Mukhopadhyay, “Determining Wellness Through An
Ambient Assisted Living Environment”, IEEE Intelligent Systems, May/June 2014, pp. 30-37.
[18] N.K. Suryadevara, S.C. Mukhopadhyay, R. Wang, R.K. Rayudu, Forecasting the behavior
of an elderly using wireless sensors data in a smart home, Engineering Applications of
Artificial Intelligence, Volume 26, Issue 10, November 2013, Pages 2641-2652, ISSN 0952-
1976, http://dx.doi.org/10.1016/j.engappai.2013.08.004.
[19] Pan Feng, Wang Xiaojun and Wang Weihong,research and restoration technology of
video motion target detection based on kernel method, International Journal on Smart Sensing
and Intelligent Systems, vol.7, no.4, pp.1516-1534, 2014.
[20] Shaoping Zhu and Yongliang Xiao, Intelligent detection of facial expression based on
image, International Journal on Smart Sensing and Intelligent Systems, vol.8, no.1, pp. 581-
601, 2015.

EXTRA FILES

COMMENTS