Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 9 , ISSUE 2 (June 2016) > List of articles


J.-S. Botero V. * / F.-E. López G. * / J.-F. Vargas B. *

Keywords : Photodetector, monochromator, broadband light sources, XYZ color space, RGB sensors.

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 9, Issue 2, Pages 752-764, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 05-January-2016 / Accepted: 31-March-2016 / Published Online: 01-June-2016



Photodetectors are sensors, which respond to the electromagnetic radiation of the spectrum. Their spectral response depends on many factors of the manufacturing process, e.g. the type of diode that is used or, in some cases, the optical elements that are added to limit the response band. In this paper, we propose an experimental methodology to obtain the spectral response of a photodetector by constructing the characteristic curve using the monochromatic response. For this purpose, we use a broadband source as input of the monochromator to vary the wavelength each five nm. The characteristic curves of one commercial color sensor were obtained (including the loss) using the output ratio of the monochromator. Via the numerical expression of the response curve, it is possible to model the actual response of the photodetectors to known or simulated spectra of electromagnetic radiation, and thus to generalize photometric measurements. Previously we have demonstrated the importance of obtaining such measurements to study light sources. Finally, this newly developed method helps studying the behavior of a photodetector in detail; hence, it enables the derivation of photometric measurements from known data or simulations.

Content not available PDF Share



[1] M. a Martínez, E.M. Valero, J. Hernández-Andrés, J. Romero, G. Langfelder, Combining
transverse field detectors and color filter arrays to improve multispectral imaging systems.,
Appl. Opt. 53 (2014) C14–C24. doi:10.1364/AO.53.000C14.
[2] G. Langfelder, Spectrally reconfigurable pixels for dual-color-mode imaging sensors,
Appl. Opt. 51 (2012) A91–A98. doi:10.1364/AO.51.000A91.
[3] H. Escid, M. Attari, M. Ait, W. Mechti, 0 . 35 μm CMOS optical sensor for an integrated
transimpedance circuit, Int. J. Smart Sens. Intell. Syst. 4 (2011) 467–481.
[4] ASSIST, Recommendations for Specifying Color Properties of Light Sources for Retail
Merchandising, Lighthing Research Center, 2010.
[5] K.. Biron, C.M.H. Demers, Perceptual Interactions between Light and Architecture: A
graphical vocabulary using models and photographs, in: PLEA2009, Quebec, 2009.
[6] Á. Logadóttir, S. a. Fotios, J. Christoffersen, S.S. Hansen, D.D. Corell, C. Dam-Hansen,
Investigating the use of an adjustment task to set preferred colour of ambient illuminat ion,
Color Res. Appl. 38 (2013) 46–57. doi:10.1002/col.20714.
[7] F. Behar-Cohen, C. Martinsons, F. Viénot, G. Zissis, A. Barlier-Salsi, J.P. Cesarini, et al.,
Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?, Prog. Retin.
Eye Res. 30 (2011) 239–257. doi:10.1016/j.preteyeres.2011.04.002.
[8] H. Li, X. Mao, Y. Han, Y. Luo, Wavelength dependence of colorimetric properties of
lighting sources based on multi- color LEDs, Opt. Express. 21 (2013) 3775–3783.
[9] F.S. Yılmaz, C. Ticleanu, G. Howlett, S. King, P.J. Littlefair, People-friendly lighting
controls – User performance and feedback on different interfaces, Light. Res. Technol.
(2015) 1477153515583180. doi:10.1177/1477153515583180.
[10] J. Schhanda, P. Csuti, F. Szabo, P. Bhusal, L. Halonen, Introduction to a study of
preferred colour rendering of light sources, Light. Res. Technol. 47 (2015) 28–35.
[11] T.P. State, T. Hong, K. Polytechnic, H. Kong, P. Corporation, K. City, et al., Colour
preference varies with lighting application, Light. Res. Technol. (2015) 1–13.
[12] I. Gómez, E. Pérez-Rodríguez, B. Viñegla, F.L. Figueroa, U. Karsten, Effects of solar
radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green
alga Dasycladus vermicularis from southern Spain, J. Photochem. Photobiol. B Biol. 47
(1998) 46–57. doi:10.1016/S1011-1344(98)00199-7.
[13] P. Pinho, T. Rosvall, E. Tetri, L. Halonen, Light emitting diodes in plant growth:
comparative growth test in greenhouse and evaluation of photosynthetic radiation, (2008).
[14] J. Torres-Sánchez, F. López-Granados, J.M. Peña, An automatic object-based method for
optimal thresholding in UAV images: Application for vegetation detection in herbaceous
crops, Comput. Electron. Agric. 114 (2015) 43–52. doi:10.1016/j.compag.2015.03.019.
[15] W.-K. Ong, H.-F. Chen, C.-T. Tsai, Y.-J. Fu, Y.-S. Wong, D.-J. Yen, et al., The activation
of directional stem cell motility by green light-emitting diode irradiation., Biomaterials. 34
(2013) 1911–20. doi:10.1016/j.biomaterials.2012.11.065.
[16] S. Yoshida, T. Mandel, C. Kuhlemeier, Stem cell activation by light guides plant
organogenesis, Genes Dev. 25 (2011) 1439–50. doi:10.1101/gad.631211.
[17] D. Wu, D.-W. Sun, Colour measurements by computer vision for food quality control – A
review, Trends Food Sci. Technol. 29 (2013) 5–20. doi:10.1016/j.tifs.2012.08.004.
[18] D. Bhattacharjee, G. Sharma, R. Bera, Universal intelligent sensor interface, Int. J. Smart
Sens. Intell. Syst. 8 (2015) 2307–2327.
[19] S. Matta, S.M. Mahmud, An intelligent light control system for power saving, in: IECON
2010-36th Annu. Conf. IEEE Ind. Electron. Soc., IEEE, 2010: pp. 3316–3321.
[20] M. Miki, Y. Kasahara, T. Hiroyasu, M. Yoshimi, Construction of Illuminance Distribution
Measurement System and Evaluation of Illuminance Convergence in Intelligent Lighting
System, in: IEEE SENSORS 2010 Conf., IEEE, 2010: pp. 2431–2434.
[21] Y.-J. Wen, J. Granderson, A.M. Agogino, Towards Embedded Wireless-Networked
Intelligent Daylighting Systems for Commercial Buildings, IEEE Int. Conf. Sens.
Networks, Ubiquitous, Trust. Comput. (2006) 326–331. doi:10.1109/SUTC.2006.1636196.
[22] M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J.R. Mansfield, et al., Near-infrared
spectroscopic imaging in art conservation: investigation of drawing constituents, J. Cult.
Herit. 4 (2003) 127–136. doi:10.1016/S1296-2074(03)00024-4.
[23] E.M. Gorostiza, J.L.L. Galilea, F.J.M. Meca, D.S. Monzú, F.E. Zapata, L.P. Puerto,
Infrared sensor system for mobile-robot positioning in intelligent spaces., Sensors. 11
(2011) 5416–38. doi:10.3390/s110505416.
[24] Y. Le Maoult, T. Sentenac, J.J. Orteu, J.P. Arcens, Fire Detection, Process Saf. Environ.
Prot. 85 (2007) 193–206. doi:10.1205/psep06035.
[25] C.-C. Tong, K.-L. Wen, Y.-T. Wang, S.-J. Lin, The development of portable infrared
color sensor, in: Ind. Technol. 2005. ICIT 2005. IEEE Int. Conf., IEEE, 2005: pp. 959–
[26] T. Fu, H. Zhao, J. Zeng, Z. Wang, M. Zhong, C. Shi, Improvements to the three-color
optical CCD-based pyrometer system, Appl. Opt. 49 (2010) 5997–6005.
[27] J.E. Agudo, P.J. Pardo, H. Sánchez, A.L. Pérez, M.I. Suero, A low-cost real color picker
based on arduino., Sensors (Basel). 14 (2014) 11943–56. doi:10.3390/s140711943.
[28] G.C. Anzalone, A.G. Glover, J.M. Pearce, Open-source colorimeter., Sensors (Basel). 13
(2013) 5338–46. doi:10.3390/s130405338.
[29] J.S. Bajić, D.Z. Stupar, B.M. Dakić, M.B. Živanov, L.F. Nagy, An absolute rotary
position sensor based on cylindrical coordinate color space transformation, Sensors
Actuators A Phys. 213 (2014) 27–34. doi:10.1016/j.sna.2014.03.036.
[30] K.-C. Lee, S.-H. Moon, B. Berkeley, S.-S. Kim, Optical feedback system with integrated
color sensor on LCD, Sensors Actuators A Phys. 130-131 (2006) 214–219.
[31] M. Moghavvemi, S.S. Jamuar, E.H. Gan, Y.C. Yap, Design of low cost flexible RGB
color sensor, in: IEEE (Ed.), 2012 Int. Conf. Informatics, Electron. Vis., IEEE, Dhaka,
2012: pp. 1158–1162. doi:10.1109/ICIEV.2012.6317416.
[32] Ö.G. Saracoglu, H. Altural, Color Regeneration from Reflective Color Sensor Using an Artificial Intelligent Technique, Sensors (Basel). 10 (2010) 8363–8374.
[33] A. Sen, J. Albarella, J. Carey, P. Kim, W. McNamara III, Low-cost colorimetric sensor
for the quantitative detection of gaseous hydrogen sulfide, Sensors Actuators B Chem. 134
(2008) 234–237. doi:10.1016/j.snb.2008.04.046.
[34] M. Aldrich, N. Zhao, J.A. Paradiso, Energy efficient control of polychromatic solid state
lighting using a sensor network, in: SPIE 7784, Tenth Int. Conf. Solid State Light., SPIE,
2010. doi:10.1117/12.860755.
[35] M. Ashibe, M. Miki, T. Hiroyasu, Distributed optimization algorithm for lighting color
control using chroma sensors, in: 2008 IEEE Int. Conf. Syst. Man Cybern., IEEE,
Singapore, 2008: pp. 174–178. doi:10.1109/ICSMC.2008.4811270.
[36] J.-S. Botero V., F.-E. Lopez G., J.-F. Vargas B., Classification of artificial light sources
and estimation of Color Rendering Index using RGB sensors , K Nearest Neighbor and
Radial Basis Function, Int. J. Smart Sens. Intell. Syst. 8 (2015) 1505–1524.
[37] J.-S. Botero V., F.-E. Lopez G., J.-F. Vargas B., Calibration method for Correlated Color
Temperature (CCT) measurement using RGB color sensors, in: Image, Signal Process.
Artif. Vis. (STSIVA), 2013 XVIII Symp., IEEE, Bogotá, 2013: pp. 3–8.
[38] J.-S. Botero V., F.-E. Lopez G., J.-F. Vargas B., Calibration Method for Measuring the
Color Rendering Index (CRI) using RGB Sensor, Tecnológicas. EE (2013) 325–338.
[39] J.-S. Botero V., S.-M. Navarro, N. Giraldo, L. Atehortua, Estimation of
Photosynthetically Active Radiation (PAR) using a low cost spectrometer, IEEE Lat. Am.
Trans. 12 (2014) 107–111. doi:10.1109/TLA.2014.6749525.
[40] M. Assaad, I. Yohannes, A. Bermak, D. Ginhac, F. Meriaudeau, Design and
characterization of automated color sensor system, Int. J. Smart Sens. Intell. Syst. 7 (2014)