Palladium Nanotubes for Optical Hydrogen Sensing


Share / Export Citation / Email / Print / Text size:

International Journal on Smart Sensing and Intelligent Systems

Professor Subhas Chandra Mukhopadhyay

Exeley Inc. (New York)

Subject: Computational Science & Engineering, Engineering, Electrical & Electronic


eISSN: 1178-5608



VOLUME 7 , ISSUE 5 (December 2014) > List of articles

Special issue ICST 2014

Palladium Nanotubes for Optical Hydrogen Sensing

M. B. McAuley * / A. Murphy / R. Pollard

Keywords : component; optical sensing; gas sensing; palladium; hydrogen; nanotubes

Citation Information : International Journal on Smart Sensing and Intelligent Systems. Volume 7, Issue 5, Pages 1-4, DOI:

License : (CC BY-NC-ND 4.0)

Published Online: 15-February-2020



Arrays of freestanding upright palladium nanotubes have been fabricated using a bottom-up method of electrodepositing into anodised alumina pores. Optical transmission measurements carried out with a range of postfabrication treatment methods suggest that hydrogen diffuses into both the inner and outer surface areas of the tube structure. Furthermore, scanning electron microscopy of the same sample before and after cycling hydrogen exposure show that the structures appear undamaged by the repeated lattice expansion.

Content not available PDF Share



[1] M. a. Butler, “Optical fiber hydrogen sensor,” Appl. Phys. Lett., vol. 45, no. 10, p. 1007, 1984.

[2] K. Wyrzykowski, A. Rodzik, and B. Baranowski, “Optical transmission and reflection of PdHx thin films,” J. Phys. Condens. Matter, vol. 2269, 1989.

[3] F. A. Lewis, The Palladium Hydrogen System, 1st ed. Academic Press Inc, 1967.

[4] T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors – A review,” Sensors Actuators B Chem., vol. 157, no. 2, pp. 329–352, Oct. 2011.

[5] S. Nazarpour, a. Cirera, and M. Varela, “Material properties of Au–Pd thin alloy films,” Thin Solid Films, vol. 518, no. 20, pp. 5715–5719, Aug. 2010.

[6] X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp, W. K. Kwok, and T. Xu, “Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes.,” Nano Lett., vol. 11, no. 1, pp. 262–8, Jan. 2011.

[7] A. Pundt, “Hydrogen in Nano-sized Metals,” Adv. Eng. Mater., vol. 6, no. 12, pp. 11–21, Feb. 2004.

[8] J. R. Pitts, P. Liu, S. Lee, C. E. Tracy, and A. Hopkins, “Interfacial Stability of Thin Film Hydrogen Sensors,” Proc. 2000 DOE Hydrog. Progr. Rev., pp. 1–16, 2000.

[9] P. Offermans, H. D. Tong, C. J. M. van Rijn, P. Merken, S. H. Brongersma, and M. Crego-Calama, “Ultralow-power hydrogen sensing with single palladium nanowires,” Appl. Phys. Lett., vol. 94, no. 22, p. 223110, 2009.

[10] N. Khosro Pour, F. Krummenacher, and M. Kayal, “An ultra-low power energy-efficient microsystem for hydrogen gas sensing applications,” Analog Integr. Circuits Signal Process., vol. 77, no. 2, pp. 155–168, Sep. 2013.

[11] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing.,” Nano Lett., vol. 11, no. 10, pp. 4366–9, Oct. 2011.

[12] S. H. Lim, B. Radha, J. Y. Chan, M. S. M. Saifullah, G. U. Kulkarni, and G. W. Ho, “Flexible palladium-based h2 sensor with fast response and low leakage detection by nanoimprint lithography.,” ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 7274–81, Aug. 2013.

[13] W. R. Hendren, A. Murphy, P. Evans, D. O. Connor, G. A. Wurtz, A. V Zayats, R. Atkinson, and R. J. Pollard, “Fabrication and optical properties of gold nanotube arrays,” J. Phys. Condens. Matter, vol. 20, 2008.

[14] P. Albers, J. Pietsch, and S. F. Parker, “Poisoning and deactivation of palladium catalysts,” J. Mol. Catal. A Chem., vol. 173, no. 1–2, pp. 275–286, Sep. 2001.