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ABSTRACT- Ball and beam system is one of a nonlinear and unstable control system, thus providing 

a challenge to the control engineers and researchers. There are a number of controllers which have 

been studied for years that can be used to stabilize the ball and beam system. This paper investigates 

the performance of few different control approaches that consist of conventional controller, modern 

controller and intelligent controller for a ball and beam system. It will involve the derivation of the 

mathematical modeling that includes the linearization of the model in order to be used with the linear 

controllers. The works followed with designing those controllers and simulating it in MATLAB. Each 

controller performance will be analyzed and compared which is based on common criteria’s of the step 

response. An appropriate graphic user interface (GUI) has been developed to view the animation of 

the ball and beam system. 

 
Index terms: ball beam, modeling, PID controller, LQR controller, neural network controller 
 

I.  INTRODUCTION 

The ball and beam system is a simple mechanical system which usually difficult to control.  It 

consists of rigid beam which is free to rotate in the vertical plane at the pivot, with a solid ball 

rolling along the beam. It can be categorized into two configurations.  The first configuration is 

shown in Figure 1(a), which illustrates that the beam is supported in the middle, and rotates 

against its central axis. Most ball and beam systems use this type of configuration such as Hirsch 

(1999) [1], Rosales (2004) [2] and Lieberman (2004) [3]. This type of configuration is normally 

called as ‘Ball and Beam Balancer’. The advantage of this form is that it is easy to build and the 

mathematical model is relatively simple. 

The next configuration is constructed with the beam is supported on both sides by two level 

arms. One of the level arms acted as the pivot, and the other is coupled to motor output gear. 

The disadvantage is that more consideration of the mechanical parts, which meant add some 

difficulties in deriving a mathematical model. This type of configuration is so called ‘Ball and 
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II.  MATHEMATICAL MODELING OF THE BALL AND BEAM SYSTEM 
As illustrated in Figure 1(b), a ball is placed on a beam that free to roll along the length of the 

beam at horizontal plane. A lever arm is attached to the beam at one end and a servo gear at the 

other. The servo gear turns by an angleθ , and the lever changes the angle of the beam byα . The 

force that accelerates the ball as it rolls on the beam come from the component of gravity that 

acts parallel to the beam. The ball actually accelerates along the beam by rolling, but we can 

simplify the derivation by assuming that the ball is sliding without friction along the beam. The 

mathematical modeling of ball and beam system consists of DC servomotor dynamic, alpha-

theta relation, and ball on the beam dynamic. 

The dynamic equation of the ball on the beam has been described by Hauser [9] by using 

Lagrange method as given below, 

 2
2 sin0 αα  mrmgrm

R
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where bJ  is the moment inertia of the ball, R  is radius of the solid ball, r  is acceleration of the 

ball, m  is mass of the ball, g is gravitational constant, α  is beam angle and α  is angular 

velocity of the beam angle. The derivation of equation (1) is based on diagram depicted in 

Figure 2.  

 
Figure 2. Force acting on the ball and beam system 

 

Linearization of equation (1) can be estimated when the system approach the stable point. At 

this point 0≈α , whereα  is the angular velocity of the beam angle. Therefore, the linear 

approximation of the system is given by differential equation as follows,  
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where am=85 and bm

 

=50. In differential equation, servomotor model can be written as 

inmm Vab +−= θθ                     (10) 

The linearized system equations can also be represented in state-space form. This can be 

done by selecting the ball's position ( r ) and velocity ( r ) from equation (4) as the state variables. 

Besides, we select motor gear angle (θ ) and motor angular velocity (θ ) from equation (10) as 

another state variables, and the motor input voltage ( inV ) as the input. The state-space 

representation is shown in equation (11), whereas equation (12) shows the output equation for 

this system. The mathematical model in state space form is used to design the linear quadratic 

regulation (LQR) controller in the next section.  
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III.  CONTROLLER DESIGN 

The controller realization is implemented via three control strategies, namely PID controller, 

linear quadratic regulation (LQR) controller and neural network controller. The control problem 

is to design a controller which computes the applied voltage inV  for the motor to move the ball in 

such a way that the actual position of the ball reaches the desired position. The motor is 

controlled to produce the desired α (beam angle), however it should be noted that α  is 

controlled  b y the angle at the outp ut of the serv omoto r p lant (θ angle). The simplest control 

strategy is the 1-DOF (Degree of Freedom) topology shown in Figure 3, where the plant is 

treated as the cascade connection of transfer function in equations (4), (5) and (9). Although it is 

possible to design the controller C(s) such that the closed-loop system is stable, the existence of 

multiple integrator in the plant contributes - 270° phase lag to the loop gain.  This provides a 

difficulty for obtaining a good closed-loop performance.  For decision making of controller 

design, a few design specifications have been set. In this design, we only take two 

considerations to be met which are settling time less than 3 second and percentage of overshoot 
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Figure 4. 2-DOF control strategy for the linearized model that utilize PID controller 

b. LQR controller design 

There are various types of state space controller techniques such as full state feedback control, 

observer control and optimal control. This paper analyzes a full state feedback controller which 

is used linear quadratic regulation (LQR) approach. The schematic of a full-state feedback 

system is shown in Figure 5(a). From this figure, rref

For the LQR controller design, we will utilize state feedback equation and output equation as 

in (11). The characteristic equation for the closed-loop system is given by the determinant of [sI-

(A-BK)], where I is identity matrix, while A and B are the system matrix and input matrix 

respectively from state space equation in (11). For this system the A and B*K are both 4×4 

matrices. Hence, there should be four poles for this system. 

(t) is desired position, r(t) is output position 

and K is full-state feedback gain. 

LQR will give the optimal controller under certain assumptions. The ‘lqr’ function (in 

Matlab) allows us to choose two parameters, regulator (R) and quadratic (Q), which will balance 

the relative importance of the input and state in the cost function that we are trying to optimize. 

The simplest case is to assume R=1, and Q=CT*C, where C is output matrix from equation (12) 

and CT

R = 1; 

 is matrix transpose of C. The controller can be tuned by changing the nonzero elements 

in the Q matrix to get a desirable response. Thus, that element will be used to weight the output 

response. The strategy is described in Matlab command as shown below: 

Q =[x 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 

K = lqr (A, B, Q, R)                (15) 

From above command, by increasing x, the settling time (Ts) and rise time (Tr

 K = [-200.0000  -79.3501     110.1876     1.9928] 

) can be 

decreased. For this design, the value of x is set to 40000 and let R remain one.  The following 

value of K was found: 
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these errors will be used to adjust the controller. It can be done by replacing the ball beam with 

the ‘model network’, for training the controller. Figure 7 shows the diagram of the neural 

network controller, with the inclusion of ‘model network’. 

From Figure 7, the derivatives of the error can be back-propagated through the model 

network to the control network. The derivatives are then back-propagated through the controller 

and used to adjust its weights and biases (in this case, the model network’s weights and biases 

are not changed). Thus the control network must learn how to control the ball and beam system 

(that represented temporarily by the model network) so that it behaves like the linear reference 

model [11]. 

Before the controller network can be trained, the model network and the linear reference 

model need to be defined. Base on equation (3), the ball and beam system can be represented as 

below state equation: 
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where positionrx ==1 , velocitydtdrx == /2 , anglebeamu _=  and g=gravitational constant. 

The ballbeam model is summarized with the function ‘bmodel’ in MALAB file, which takes 

the current time (t), ball position (position), ball velocity (vel), and the beam angle (angle), and 

returns the derivatives of position, velocity, and force. 

x = [position; vel; angle] 

dx = bmodel(t,x) 

Then, we will simulate the ball beam model network from 0 to 0.05 seconds using ode23 by 

using this command; [time, X] = ode23 (‘bmodel’,[0 0.05],x). This function returns a row vector 

of times, and the matrix X of state vectors associated with those times.  

Next, the examples of ballbeam behavior must be created so that the network can be trained. 

The MATLAB code is comprised in bnb1a.m, which defines several different ballbeam position, 

ballbeam velocities, and beam angle. By taking all possible combinations of these values, we get 

a matrix Bm.  The model network has two states (position and velocity) and one input (angle), 

thus the network requires three inputs and one output. The function ‘newff’ is used to create a 

two-layer tansig/ purelin network with three inputs and one output and eight hidden neurons, 

where ‘mnet’ is the ballbeam model network. These commands are comprised in MATLAB 

function, bnb1c.m. The mnet has to be trained in order to get the optimum combination of the 

weights and biases. Levenberg-Marquardt training function ‘trainlm’ is used to obtain a solution 
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(GUI). The GUI has been designed by m-files coding in the MATLAB features. The designed 

GUI was integrated with the 3 types of controller which are PID controller, LQR controller and 

neural network controller. Figure 8 shows the developed GUI for a ball and beam system. 

Basically, it consists of three main panels which are controller setup, plotting response for ball 

and beam, and ball and beam animation. The full source code for the GUI is available in 

MATLAB file, bnb.m.  
 

V. RESULT AND ANALYSIS 

 

a. Results for Proportional (P) and Proportional-Integral-Derivative (PID) Controller 

Proportional controller is the most basic strategy for the feedback control law. The controller 

output is made proportional to the error and the proportionality constant is called the 

proportional gain (Kp). Unfortunately, this controller is not capable of maintaining the output 

steady state value at the desired value as shown in Figure 9(a). From this figure, Kp is set to be 

0.1 and setpoint at 0.2 meter. While increased Kp 
gain, the output will response faster because it 

decreases the rise time (Tr). However, Kp 

 

gain is limited by the dynamics of the system, where 

for ball and beam system the response is limited by the length of the beam (0.4 meter). 

Therefore, when the response oscillates beyond this value, the system will stop as the ball 

reaches the maximum distance. 

 
Figure 8. Graphical user interface layout in MATLAB 
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referring to the ball position on the beam. The graph shows that the output tracks the changes of 

the reference input. The controller gives a very fast response with the settling time of 1.3 second 

and rising time that less than 0.5 second. In addition, the LQR tend to produce small steady state 

error of 0.0014, however it produces a high overshoot of about 8.2%. Thus, the controller is not 

satisfied the design requirements, even it produces a very fast response. 

The LQR controller gives the best response by the optimization process. We can only tunes 

the response time (rise time Tr, peak time Tp, and settling time Ts

 

) by changing the coefficient 

value in the matrix Q. It also can be done by tuning the value of R and the best combination 

value of R and matrix Q will give a satisfactory response. In this design, we fix the value of R to 

one in order to simplify the design process. By increasing the value of x in matrix Q, we should 

able to get a better settling time and rising time. Unfortunately, it will increase the percentage of 

overshoot in the output response. In our case, if we decrease the x value, the overshoot 

specification can be met, however it will take a longer response time. 

 
c. Results for Neural Network Controller 

The simulation result for neural network controller is shown in Figure 9(d).  It shows that the 

output can track with the changes of the set-point. With the intelligent controller, it gives a 

promising results that nearly same to the conventional controller. A small steady state error of 

0.004% is generated without the existing of the overshoot. However, the response time is a little 

bit slower than the other controllers due to the time consume on the learning and training 

process. This controller gives the settling time of 2.4 second and rising time of 1.9 second at the 

reference input of 0.1 meter. In further, if the set-point is increased to a maximum limit (0.4 

meter), it takes a longer response time with the settling time is equal to 3.1 second. Hence, we 

can summarize that neural network controller is able to control the ball and beam system, but the 

response time is a little bit out from the design specification. 
 

d. Overall comparison of the controller performance 

The graph in Figure 10 shows the set-point and the output response for comparison of the entire 

controllers. It is quite surprising that the designed PID controller has an overall better 

performance than P, LQR and neural network controller, though it seems that the PID gives 

fastest response time with the reasonable percentage of overshoot and steady state error.  The 

comparison of the response’s characteristics is depicted in Table 2. 
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VI. CONCLUSIONS 

The mathematical model for a ball and beam system has been derived successfully. The plant is 

consists of three main components which are servomotor model, angle conversion gain, and ball 

on the beam dynamic equation. Both servomotor and ball beam dynamic has the second order 

transfer function.  Besides, the state space equation was derived in order to design the state space 

controller. Several controllers of conventional, modern and intelligent scheme have been 

successfully designed to control the ball and beam system.  It is quite tedious to design the 

fourth order system, thus for conventional method, two controllers have been implemented to 

control those second order components. The modern controller implements the full state 

feedback control that utilizes of LQR method, whereas neural network was utilized for the 

intelligent control strategy. Furthermore, an interesting ball and beam GUI has been successfully 

designed by using MATLAB program. The analysis results had shown that PID controller shows 

better performance among the others, however, the surprising result is may be due to the 

implementation of cascade approach in the PID controller. If the simplest control strategy (1-

DOF) is selected, it is possible that the PID will yield the worst performance, or may not be able 

to stabilize the system. With the basic configuration, seem like the intelligent controllers not 

giving a good transient response, but still can be an alternative to replace the conventional and 

modern controller. The results for intelligent controllers are possible to be improved further by 

using advance configuration and better tuning method. Notice that the implementation of LQR 

controller and neural network controller are both at basic configurations, and not at the optimal 

parameters. 
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