Do minocycline and other suppressors of microglia reactivity have a future in prevention or treatment of epilepsy?


Share / Export Citation / Email / Print / Text size:

Journal of Epileptology

Foundation of Epileptology

Subject: Medicine


eISSN: 2300-0147





Volume / Issue / page

Related articles

VOLUME 25 , ISSUE 1-2 (December 2017) > List of articles

Do minocycline and other suppressors of microglia reactivity have a future in prevention or treatment of epilepsy?

Władysław Lasoń * / Joanna Ślusarczyk / Magdalena Regulska / Monika Leśkiewicz / Agnieszka Basta-Kaim

Keywords : epilepsy, neuroinflammation, microglia, anti-inflammatory/antiepileptic drugs

Citation Information : Journal of Epileptology. Volume 25, Issue 1-2, Pages 9-20, DOI:

License : (CC BY 4.0)

Received Date : 15-May-2017 / Accepted: 10-July-2017 / Published Online: 30-August-2017



Introduction. An increasing body of evidence points to an important role of neuroinflammatory processes in the pathomechanism of epilepsy. This hypothesis is mainly supported by data showing an increase of pro-inflammatory cytokine levels and glia activation in animal models of epilepsy and in brain tissue of epileptic patients. On the other hand, less emphasis has been put on pharmacological verification of this hypothesis.

Aim. The aim of this review is to summarize current knowledge on potential usefulness of microglia regulators and anti-inflammatory agents in designing antiepileptic/antiepileptogenic drugs, with the primary mechanism of action based on the inhibition of neuroinflammation.

Methods. We reviewed PubMed and MEDLINE databases to select publications in the topic: epilepsy, neuroinflammation, microglia and microglia regulators with antiepileptic properties. We searched the databases up to April 2017 with no date restrictions.

Review and Discussion. In the present paper, we will discuss new concepts of epileptogenesis which focus not only on changes in neurons but also take into consideration the role of activation of glial cells: microglia and astrocytes. Neuroinflammation, mainly through increased production of pro-inflammatory factors such as cytokines or chemokines, may play an important role in the development of epilepsy. Drugs regulating glial cells activation and consequently inflammatory status in the central nervous system have beneficial effects in different animal models of epilepsy as well as in clinical study in patients. The most promising compound seems to be minocycline which in some studies has been shown to possess antiepileptogenetic action. On the other hand, some antiepileptic drugs exhibit marked anti-inflammatory potency.

Conclusions. There are much data to suggest that there is significant opportunity for designing new antiepileptic drugs whose primary mechanism of action entails the inhibition of neuroinflammatory processes.

Content not available PDF Share



Abraham. J., Fox P.D., Condello C., Bartolini A., Koh S.: Minocycline attenuates microglia activation and blocks the longterm epileptogenic effects of early-life seizures. Neurobiology of Disease, 2012, 46: 425–430.


Ahmadirad N., Shojaei A., Javan M., Pourgholami M.H., Mirnajafi- Zadeh J.: Effect of minocycline on pentylenetetrazol-induced chemical kindled seizures in mice. Neurological Sciences, 2014, 35: 571–576


Aloisi F: Immune function of microglia. Glia, 2001, 36: 165–179.


Beheshti Nasr S.M., Moghimi A., Mohammad-Zadeh M., Shamsizadeh A., Noorbakhsh S.M.: The effect of minocycline on seizures induced by amygdala kindling in rats. Seizure, 2013, 22: 670–674.


Benson M.J., Thomas N.K., Talwar S., Hodson M.P., Lynch J.W., Woodruff T.M. et al.: A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiology of Disease, 2015, 76: 87–97.


Bhandare A.M., Mohammed S., Pilowsky P.M., Farnham M.M.: Antagonism of PACAP or microglia function worsens the cardiovascular consequences of kainic-acid-induced seizures in rats. Journal of Neuroscience, 2015, 35: 2191–2199.


Bialer M., Johannessen S.I., Levy R.H., Perucca E., Tomson T., White H.S.: Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Research, 2015, 111: 85–141.


Boison D.: The adenosine kinase hypothesis of epileptogenesis. Progress Neurobiology, 2008, 84: 249–262.


Borges K., Gearing M., McDermott D.L., Smith A.B., Almonte A.G., Wainer B.H. et al.: Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Experimental Neurology, 2003, 182: 21–34.


Bruun D.A., Cao Z., Inceoglu B., Vito S.T., Austin A.T., Hulsizer S. et al.: Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology, 2015, 95: 332–342.


Carmignoto G., Haydon P.G.: Astrocyte calcium signaling and epilepsy. Glia, 2012, 60: 1227–1233.


Citraro R., Leo A., Marra R., De Sarro G., Russo E.: Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Research Bulletin, 2015, 113: 1–7.


Cusick M.F., Libbey J.E., Patel D.C., Doty D.J., Fujinami R.S.: Infiltrating macrophages are key to the development of seizures following virus infection. Journal of Virology, 2013, 87: 1849–1860.


Dambach H., Hinkerohe D., Prochnow N., Stienen M.N., Moinfar Z., Haase C.G. et al.: Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia, 2014, 55: 184–192.


Eid T., Williamson A., Lee T.S., Petroff O.A., de Lanerolle N.C.: Glutamate and astrocytes-key players in human mesial temporal lobe epilepsy? Epilepsia, 2008, 49 (Suppl. 2): 42–52.


Fabene P.F., Bramanti P., Constantin G.: The emerging role for chemokines in epilepsy. Journal of Neuroimmunology, 2010, 224: 22–27.


Fabene P.F., Navarro Mora G., Martinello M., Rossi B., Merigo F., Ottoboni L. et al.: A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nature Medicine, 2008, 14: 1377–1383.


Fang Z., Yang Y., Chen X., Zhang W., Xie Y., Chen Y. et al.: Advances in Autoimmune Epilepsy Associated with Antibodies, Their Potential Pathogenic Molecular Mechanisms, and Current Recommended Immunotherapies. Front. Immunol., 2017, 8: 395.


Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S. et al.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010, 330: 841–845.


Glushakov A.V., Glushakova O.Y., Doré S., Carney P.R., Hayes R.L.: Animal Models of Posttraumatic Seizures and Epilepsy. Methods in Molecular Biology, 2016, 1462: 481–519.


Haberlandt E., Weger C., Sigl S.B., Rauchenzauner M., Scholl-Bürgi S., Rostásy K. et al.: Adrenocorticotropic hormone versus pulsatile dexamethasone in the treatment of infantile epilepsy syndromes. Pediatr. Neurol., 2010, 42: 21–27.


Heinemann U., Gabriel S., Schuchmann S., Eder C.: Contribution of astrocytes to seizure activity. Advances in Neurology, 1999, 79: 583–590.


Heinemann U., Kaufer D., Friedman A.: Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia, 2012, 60: 1251–1257.


Héja L., Nyitrai G., Kékesi O., Dobolyi A., Szabó P., Fiáth R. et al.: Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biology, 2012, 10: 26. doi: 10.1186/1741-7007-10-26.


Heo K., Cho Y.J., Cho K.J., Kim H.W., Kim H.J., Shin H.Y. et al.: Minocycline inhibits caspase-dependent and –independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neuroscience Letters, 2006, 398: 195–200.


Holtman L., van Vliet E.A., van Schaik R., Queiroz C.M., Aronica E., Gorter J.A.: Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Research, 2009, 84: 56–66.


Jakubs K., Nanobashvili A., Bonde S., Ekdahl C.T., Kokaia Z., Kokaia M. et al.: Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 2006, 52: 1047–1059.


Jessberger S., Zhao C., Toni N., Clemenson G.D. Jr, Li Y., Gage F.H.: Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. Journal of Neuroscience, 2007, 27: 9400–9407.


Jiang J., Quan Y., Ganesh T., Pouliot W.A., Dudek F.E., Dingledine R.: Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proceedings of the National Academy of Sciences USA, 2013, 110: 3591–3596.


Johnson A.C., Tremble S.M., Chan S.L., Moseley J., LaMarca B., Nagle K.J. et al.: Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One, 2014, 9: e113670.


Jung K.H., Chu K., Kim M., Jeong S.W., Song Y.M., Lee S.T. et al: Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpineinduced status epilepticus. European Journal of Neuroscience, 2004, 19: 3219–3226.


Jung K.H., Chu K., Lee S.T., Kim J., Sinn D.I., Kim J.M. et al.: Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiology of Disease, 2006, 23: 237–246.


Kron M.M., Zhang H., Parent J.M.: The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. Journal of Neuroscience, 2010, 30: 2051–2059.


Kwon Y.S., Pineda E., Auvin S., Shin D., Mazarati A., Sankar R.: Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. Journal of Neuroinflammation, 2013, 10: 30.


Lang N., Rothkegel H., Terney D., Antal A., Paulus W.: Minocycline exerts acute inhibitory effects on cerebral cortex excitability in humans. Epilepsy Research, 2013, 107: 302–305.


Lee D.J., Hsu M.S., Seldin M.M., Arellano J.L., Binder D.K.: Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Experimental Neurology, 2012, 235: 246–255.


Legido A., Katsetos C.D.: Experimental studies in epilepsy: immunologic and inflammatory mechanisms. Seminars in Pediatric Neurology, 2014, 21: 197–206.


Li X., Han X., Yang J., Bao J., Di X., Zhang G. et al.: Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Molecular Neurobiology, 2016. 016-0278-4.


Li T., Ren G., Lusardi T., Wilz A., Lan J.Q., Iwasato T. et al.: Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J. Clin. Invest., 2008, 118: 571–582.


Libbey J.E., Kennett N.J., Wilcox K.S., White H.S., Fujinami R.S.: Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. Journal of Virology, 2011, 85: 6913–6922.


Libbey J.E., Kennett N.J., Wilcox K.S., White H.S., Fujinami R.S.: Once initiated, viral encephalitis-induced seizures are consistent no matter the treatment or lack of interleukin-6. Journal of Neurovirology, 2011a, 17: 496–499.


Libbey J.E., Kirkman N.J., Wilcox K.S., White H.S., Fujinami R.S.: Role for complement in the development of seizures following acute viral infection. Journal of Virology, 2010, 84: 6452–6460.


Lorigados Pedre L., Morales Chacón L.M., Orozco Suárez S., Pavón Fuentes N., Estupiñán Díaz B., Serrano Sánchez T. et al.: Inflammatory mediators in epilepsy. Current Pharmaceutical Design, 2013, 19: 6766–6772.


Lowenstein D.H.: Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res. Suppl., 1996, 11: 45–60.


Lu X.C., Shear D.A., Graham P.B., Bridson G.W., Uttamsingh V., Chen Z. et al: Dual Therapeutic Effects of C-10068, a Dextromethorphan Derivative, Against Post-Traumatic Nonconvulsive Seizures and Neuroinflammation in a Rat Model of Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2015, 32: 1621–1632.


Luo C., Koyama R., Ikegaya Y.: Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia, 2016, 64: 1508– 1517.


Majkowski J.: Pathogenesis of epileptic focus. Pol. Tyg. Lek., 1994, 49: 54–58.


Marchi N., Granata T., Freri E., Ciusani E., Ragona F., Puvenna V. et al.: Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One, 2011, 6: e18200.


Matsuda T., Murao N., Katano Y., Juliandi B., Kohyama J., Akira S. et al: TLR9 signalling in microglia attenuates seizureinduced aberrant neurogenesis in the adult hippocampus. Nature Communications, 2015, 6: 6514.


Matsuura R., Hamano S.I., Ikemoto S., Hirata Y., Suzuki K., Kikuchi K. et al.: Epilepsy with myoclonic atonic seizures and chronic cerebellar symptoms associated with antibodies against glutamate receptors N2B and D2 in serum and cerebrospinal fluid. Epileptic Disord., 2017, 19: 94–98.


Miranda H.F., Sierralta F., Jorquera V., Poblete P., Prieto J.C., Noriega V.: Antinociceptive interaction of gabapentin with minocycline in murine diabetic neuropathy. Inflammopharmacology, 2017, 25: 91–97.


Mishra M.K., Basu A.: Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. Journal of Neurochemistry, 2008, 105: 1582–1595.


Mula M.: Investigational new drugs for focal epilepsy. Expert Opinion on Investigational Drugs, 2016, 25: 1–5.


Nowak M., Strzelczyk A., Reif P.S., Schorlemmer K., Bauer S., Norwood B.A. et al: Minocycline as potent anticonvulsant in a patient with astrocytoma and drug resistant epilepsy. Seizure, 2012, 21: 227–228.


Paolicelli R.C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P. et al: Synaptic pruning by microglia is necessary for normal brain development. Science, 2011, 333: 1456–1458.


Parent J.M., von dem Bussche N., Lowenstein D.H.: Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus, 2006, 16: 321–328.


Park K.I., Dzhala V., Saponjian Y., Staley K.J.: What Elements of the Inflammatory System Are Necessary for Epileptogenesis In Vitro?(1,2). eNeuro, 2015, 2 (2) ENEURO.0027-14.2015.


Pitkänen A., Lukasiuk K.: Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behavior, 2009, 14 (Suppl. 1): 16–25.


Pitkänen A., Lukasiuk K.: Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurology, 2011, 10: 173–186.


Polascheck N., Bankstahl M., Löscher W.: The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2010, 224: 219–233.


Rossi A.R., Angelo M.F., Villarreal A., Lukin J., Ramos A.J.: Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS One, 2013, 8: e78516.


Russmann V., Goc J., Boes K., Ongerth T., Salvamoser J.D., Siegl C. et al.: Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. European Journal of Pharmacology, 2016, 771: 29–39.


Salazar A.M., Grafman J.: Post-traumatic epilepsy: clinical clues to pathogenesis and paths to prevention. Handbook of Clinical Neurology, 2015, 128: 525–538.


Sato Y., Numata-Uematsu Y., Uematsu M., Kikuchi A., Nakayama T., Kakisaka Y. et al.: Acute encephalitis with refractory, repetitive partial seizures: Pathological findings and a new therapeutic approach using tacrolimus. Brain Development, 2016, 38: 772–776.


Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R. et al.: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron, 2012, 74: 691–705.


Scharfman H.E., Goodman J.H., Sollas A.L.: Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. Journal of Neuroscience, 2000, 20: 6144–6158.


Seifert G., Steinhäuser C.: Neuron-astrocyte signaling and epilepsy. Experimental Neurology, 2013, 244: 4–10.


Sierra A., Encinas J.M., Deudero J.J., Chancey J.H., Enikolopov G., Overstreet-Wadiche L.S. et al.: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 2010, 7: 483–495.


Steinhäuser C., Seifert G., Bedner P.: Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia, 2012, 60: 1192–1202.


Stienen M.N., Haghikia A., Dambach H., Thöne J., Wiemann M., Gold R. et al.: Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. British Journal of Pharmacology, 2011, 162: 491–507.


Tang Y., Le W.: Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology, 2016, 53: 1181–1194.


van Vliet E.A., Aronica E., Gorter J.A.: Blood-brain barrier dysfunction, seizures and epilepsy. Seminars in Cell & Developmental Biology, 2015, 38: 26–34.


Varadkar S., Bien C.G., Kruse C.A., Jensen F.E., Bauer J., Pardo C.A. et al.: Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurology, 2014, 13: 195–205.


Vezzani A.: Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opinion on Drug Safety, 2015, 14: 583–592.


Wang D.D., Englot D.J., Garcia P.A., Lawton M.T., Young W.L.: Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav., 2012, 24: 314–318.


Wang C.H., Hsiao C.J., Lin Y.N., Wu J.W., Kuo Y.C., Lee C.K. et al.: Carbamazepine attenuates inducible nitric oxide synthase expression through Akt inhibition in activated microglial cells. Pharmaceutical Biology, 2014, 52: 1451–1459.


Wang N., Mi X., Gao B., Gu J., Wang W., Zhang Y. et al.: Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience, 2015, 287: 144–156.


White H.S., Woodbury D.M., Chen C.F., Kemp J.W., Chow S.Y., Yen-Chow Y.C.: Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Advances in Neurology, 1986, 44: 695–712.


Wyatt S.K., Witt T., Barbaro N.M., Cohen-Gadol A.A., Brewster A.L.: Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy. Experimental Neurology 2017, 295: 184–193.


Xie W., Cai L., Yu Y., Gao L., Xiao L., He Q. et al.: Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy. Neuroinflammation, 2014, 11: 41.


Zhang B., Zou J., Han L., Rensing N., Wong M.: Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia, 2016, 57: 1317–1325.