Optimum Concentrations of Trichoderma longibrachiatum and Cadusafos for Controlling Meloidogyne javanica on Zucchini Plants


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 1 (March 2016) > List of articles

Optimum Concentrations of Trichoderma longibrachiatum and Cadusafos for Controlling Meloidogyne javanica on Zucchini Plants


Keywords : biological control, cadusafos, Cucurbita pepo, Javanese root-knot nematode, management, nematicide, nematophagous

Citation Information : Journal of Nematology. Volume 48, Issue 1, Pages 54-63, DOI: https://doi.org/10.21307/jofnem-2017-009

License : (CC BY 4.0)

Received Date : 08-October-2015 / Published Online: 21-July-2017



A factorial experiment was established in a completely randomized design to verify the effect of different inoculum levels
of an Iranian isolate of Trichoderma longibrachiatum separately and in combination with various concentrations of cadusafos against Meloidogyne javanica in the greenhouse. Zucchini seeds were soaked for 12 hr in five densities (0, 105, 106, 107, and 108 spores/ml suspension) of the fungus prior to planting in pots containing four concentrations of cadusafos (0, 0.5, 1, and 2 mg a.i./kg soil). The data were analyzed using a custom response surface regression model and the response surface curve and contour plots were drawn. Reliability of the model was examined by comparing the result of new experimental treatments with the predicted results. The optimal levels of these two variables also were calculated. The interactive effects of concentrations of Trichoderma and cadusafos were insignificant for several responses such as the total number of eggs per gram soil, the number of intact eggs per gram soil, nematode reproduction factor, and control percent. Closeness of experimental mean values with the expected values proved the validity of the model. The optimal levels of the cadusafos concentration and Trichoderma concentration that caused the best plant growth and lowest nematode reproduction were 1.7 mg a.i./kg soil and 108 conidia/ml suspension, respectively.

Content not available PDF Share



  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Amsterdam, The Netherlands: Elsevier Academic Press.
  2. Al-Hazmi, A. S., and TariqJaveed, M. 2016. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi Journal of Biological Science 23:288–292.
  3. Al-Shammari, T. A., Bahkali, A. H., Elgorban, A. M., Kahky, M. T., and Al-Sum, B. A. 2013. The use of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode‚ Meloidogyne javanica on tomato. Journal of Pure and Applied Microbiology 7:199–207.
  4. Baermann, G. 1917. A simple method for the detection of Ankylostomum (nematode) larvae in soil tests. Eine Einfache Methode zur Auffindung Von Ankylostomum (Nematoden) –Larven in Erdproden. Geneeskundig Tijdschrift voor Nederlandsch Indie¨ 57:131–137.
  5. Bourne, J. M., Kerry, B. R., and De Leij, F. A. A. M. 1996. The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium 
    chlamydosporium Goddard. Biocontrol Science and Technology 6:539–548.
  6. Contreras-Cornejo, H. A., Macıas-Rodrıguez, L., Lopez-Bucio, J. S., and Lopez-Bucio, J. 2014. Enhanced plant immunity using Trichoderma. Pp. 495–504 in V. K. Gupta, M. Schmoll, A. Herrera-Estrella, R. S. Upadhyay, I. Druzhinina, and M. G. Tuohy, eds. Biotechnology and biology of Trichoderma. Amsterdam, The Netherlands: Elsevier Academic Press.
  7. Cumagun, C. J. R., and Moosavi, M. R. 2015. Significance of biocontrol agents of phytonematodes. Pp. 50–78 in T. H. Askary, and P. R. P. Martinelli, eds. Biocontrol agents of phytonematodes.Wallingford, UK: CABI Publishing.
  8. Davies, K. G., and Spiegel, Y. 2011. Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms, Progress in Biological Control 11. Dordrecht, The 
    Netherlands: Springer Science + Business Media.
  9. Djian, C., Pijarowski, L., Ponchet, M., Arpin, N., and Favrebonvin, J.1991. Acetic acid: A selective nematocidal metabolite from culture filterates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica 37:101–112.
  10. Ghaderi, R., Kashi, L., and Karegar, A. 2012. The nematodes of Iran, based on the published reports until 2011. Tehran, Iran: Agricultural Training and Promotion Publishing.
  11. Hildalgo-Diaz, L., and Kerry, B. R. 2008. Integration of biological control with other methods of nematode management. Pp. 29–49 in A. Ciancio, and K. G. Mukerji, eds. Integrated management and biocontrol of vegetable and grain crops nematodes. Dordrecht, The Netherlands: Springer.
  12. Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57:1025–1028.
  13. Jindapunnapat, K., Chinnasri, B., and Kwankuae, S. 2013. Biological control of root-knot nematodes (Meloidogyne enterolobii) in guava by the fungus Trichoderma harzianum. Journal of Developments in Sustainable Agriculture 8:110–118.
  14. Kerry, B. R. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology 38:423–441.
  15. Moosavi, M. R. 2012. Nematicidal effect of some herbal powders and their aqueous extracts against Meloidogyne javanica. Nematropica 42:48–56.
  16. Moosavi, M. R. 2014. Dynamics of damage to eggplant by Meloidogyne javanica. CIBTech Journal of Zoology 3:43–49.
  17. Moosavi, M. R., and Askary, T. H. 2015. Nematophagous fungicommercialization. Pp. 187–202 in T. H. Askary, and P. R. P. Martinelli, eds. Biocontrol agents of phytonematodes. Wallingford, UK: CABI Publishing.
  18. Moosavi, M. R., and Zare, R. 2012. Fungi as biological control agents of plant-parasitic nematodes. Pp. 67–107 in J. M. Merillon, and K. G. Ramawat, eds. Plant defense: Biological control, Progress in Biological Control 12. Dordrecht, The Netherlands: Springer Science + Business Media.
  19. Moosavi, M. R., and Zare, R. 2015. Factors affecting commercial success of biocontrol agents of phytonematodes. Pp. 423–445 in T. H. Askary, and P. R. P. Martinelli, eds. Biocontrol agents of phytonematodes.Wallingford, UK: CABI Publishing.
  20. Moosavi, M. R., Zare, R., Zamanizadeh, H. R., and Fatemy, S. 2010. Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. Journal of Invertebrate Pathology 104:125–133.
  21. Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. 2009. Process and Product Optimization Using Designed Experiments. 3rd ed. Hoboken, NJ: John Wiley & Sons.
  22. Nicol, J.M., Turner, S. J., Coyne, D. L., den Nijs, L.,Hockland, S., and Tahna Maafi, Z. 2011. Current nematode threats to world agriculture. Pp. 21–43 in J. Jones, G. Gheysen, and C. Fenoll, eds. Genomics and
    molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands: Springer Science + Business Media.
  23. Sahebani, N., and Hadavi, N. 2008. Biological control of the rootknoot nematode Melodogynejavanica by Trichodermaharizianum. Soil Biology and Biochemistry 40:2016–2020.
  24. Saldajeno, M. G. B., Naznin, H. A., Elsharkawy, M. M., Shimizu, M., and Hyakumachi, M. 2014. Enhanced resistance of plants to disease using Trichoderma spp. Pp. 477–493 in V. K. Gupta, M. Schmoll, A. Herrera-Estrella, R. S. Upadhyay, I. Druzhinina, and M. G. Tuohy, eds. Biotechnology and biology of Trichoderma. Amsterdam, The Netherlands: Elsevier.
  25. Samuels, G. J., Ismaiel, A., Mulaw, T. B., Szakacs, G., Druzhinina, I. S., Kubicek, C. P., and Jaklitsch, W. M. 2012. The longibrachiatum clade of Trichoderma: A revision with new species. Fungal Diversity 55:77–108.
  26. Sharon, E., Chet, I., and Spiegel, Y. 2011. Trichoderma as a biological control agent. Pp. 183–201 in K. G. Davies, and Y. Spiegel, eds. Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms, Progress in Biological Control 11. Dordrecht, The Netherlands: Springer Science +Business Media.
  27. Sholevarfard, A. R., and Moosavi, M. R. 2015. The potential of separate and combined application of some plant extracts and defense inducer molecules for controlling Meloidogyne javanica. Nematropica 45:82–91.
  28. Singh, S. K., Hodda, M., and Ash, G. J. 2013. Plant-parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. EPPO Bulletin 43:334–374.
  29. Timper, P. 2014. Conserving and enhancing biological control of nematodes. Journal of Nematology 46:75–89.
  30. Zhang, S., Gan, Y., and Xu, B. 2014. Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae. Biocontrol 59:319–331.