Grafting and Paladin Pic-21 for Nematode and Weed Management in Vegetable Production


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 48 , ISSUE 4 (December 2016) > List of articles

Grafting and Paladin Pic-21 for Nematode and Weed Management in Vegetable Production


Keywords : dimethyl disulfide, Meloidogyne incognita, methyl bromide, root-knot nematodes.

Citation Information : Journal of Nematology. Volume 48, Issue 4, Pages 231-240, DOI:

License : (CC BY 4.0)

Received Date : 23-May-2016 / Published Online: 24-July-2017



Two years of field trials conducted in a Meloidogyne incognita-infested field evaluated grafting and Paladin Pic-21 (dimethyl
disulfide:chloropicrin [DMDS:Pic] 79:21) for root-knot nematode and weed control in tomato and melon. Tomato rootstocks
evaluated were; ‘TX301’, ‘Multifort’, and ‘Aloha’. ‘Florida 47’ was the scion and the nongrafted control. A double crop of melon was planted into existing beds following tomato harvest. Melon rootstocks, C. metulifer and ‘Tetsukabuto’, were evaluated with nongrafted ‘Athena’ in year 1. In year 2, watermelon followed tomato with scion variety ‘Tri-X Palomar’ as the control and also grafted onto ‘Emphasis’ and ‘Strongtosa’ rootstocks. Four soil treatments were applied in fall both years under Canslit metalized film; Paladin Pic-21, methyl bromide:chloropicrin (MeBr:C33, 67:33), Midas (iodomethane:chloropicrin 50:50), and a herbicide-treated control. M.incognita J2 in soil were highest in herbicide control plots and nongrafted tomato. All soil treatments produced similar tomato growth,which was greater than the herbicide control. All treatments reduced M. incognita J2 in roots compared to the herbicide control. ‘Multifort’ rootstock produced the largest and healthiest roots; however, the number of M. incognita isolated from roots did not differ among the tomato rootstocks tested. Galling on tomato was highest in herbicide control plots and nongrafted plants. In melon, M.incognita J2 in soil did not differ among melon rootstocks, but numbers isolated from melon rootstocks increased in ‘Tetsukabuto’ compared with C. metuliferus. ‘Tetsukabuto’ were larger root systems than nongrafted ‘Athena’. All fumigants provided protection for all melon rootstocks against galling by M.incognita compared to the herbicide control. Galling on C. metuliferus rootstock was less in all fumigant treatments compared with nongrafted ‘Athena’ and ‘Tetsukabuto’. In watermelon, M. incognita in soil and roots did not differ among soil treatments or watermelon rootstocks, and yield was lower in both grafted rootstocks compared with the nongrafted control. All soil treatments increased average fruit weight of watermelon compared with the herbicide control, and provided effective weed control, keeping the most predominant weed, purple nutsedge (Cyperus rotundus L.), density at or below 1/m row. Grafting commercial scions onto M. incognita-resistant rootstocks has potential for nematode management combined with soil treatments or as a stand-alone component in crop production systems.

Content not available PDF Share



  1. Belova, A., Narayan, T., and Olkin, I. 2013. Methyl bromide alternatives for strawberry and tomato pre-plant uses: A meta-analysis.Crop Protection 54:1–14.
  2. Besri, M. 2007. Current situation of tomato grafting as alternative to methyl bromide for tomato production in Morocco. Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. San Diego, CA, 62.1–62.5.
  3. Bridge, J., and Page, S. L. J. 1980. Estimation of root-knot infestation levels in roots using a rating chart. Tropical Pest Management 26:296–298.
  4. Buller, S., Inglis, D., and Miles, C. 2013. Plant growth, fruit yield and quality, and tolerance to verticillium wilt of grafted watermelon and tomato in field production in the Pacific Northwest. HortScience 48:1003–1009.
  5. Butler, D. M., Kokalis-Burelle, N., Muramoto, J., Shennan, C., McCollum, T. G., and Rosskopf, E. N. 2012. Impact of anaerobic soil disinfestation combined with soil solarization on plantparasitic nematodes and introduced inoculum of soilborne plant pathogens in raised bed vegetable production. Crop Protection 39:33–40.
  6. Chen, J.-F., and Adelberg, J. 2000. Interspecific hybridization in Cucumis—Progress, problems, and perspectives. HortScience 35(1): 11–15.
  7. Esbenshade, P. R., and Triantaphyllou, A. C. 1985. Use of phenotypes for identification of Meloidogyne species. Journal of Nematology 17(1):6–20.
  8. Esbenshade, P. R., and Triantaphyllou, A. C. 1990. Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology 22(1):10–15.
  9. Gilreath, J. P., and Santos, B. M. 2004. Herbicide dose and incorporation depth in combination with 1,3-dichloropropene plus chloropicrin for Cyperus rotundus control in tomato and pepper. Crop Protection 23(3):205–210.
  10. Glaze, N. C. 1988. Weed control in direct-seeded tomato, Lycopersicon esculentum, for transplants. Weed Technology 2:333–337.
  11. Guan, W., Zhao, X., Treadwell, D., Alligood, M., Huber, D., and Dufault, N. 2013. Specialty melon cultivar evaluation under organic and conventional production in Florida. HorTechnology 23:905–912.
  12. Hong, J. C., Momol, M. T., Ji, P., Olson, S. M., Colee, J., and Jones, J. B. 2011. Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Protection 30:1340–1345.
  13. Hutchinson, C. M., McGiffen, M. E., Ohr, H. D., Sims, J. J., and Becker, J. O. 1999. Efficacy of methyl iodide soil fumigation for control of Meloidogyne incognita, Tylenchulus semipenetrans and Heterodera schactii. Nematology 1(4):407–414.
  14. Jacoby, T. P. 2012. Evaluation of the Long Term Sustainability of Methyl Bromide Alternatives in Tomato (Solanum lycopersicum Mill.) and pepper (Capsicum annuum L.). M.S. thesis. Gainesville, FL: University
    of Florida. p. 79–82.
  15. Jacoby, T. P. 2012. Evaluation of the Long Term Sustainability of Methyl Bromide Alternatives in Tomato (Solanum lycopersicum Mill.) and pepper (Capsicum annuum L.). M.S. thesis. Gainesville, FL: University
    of Florida. p. 79–82.
  16. Ji, P., Momol, M. T., Rich, J. R., Olson, S. M., and Jones, J. B. 2007. Development of an integrated approach for managing bacterial wilt and root-knot on tomato under field conditions. Plant Disease 91:1321–1326.
  17. Kokalis-Burelle, N., Bausher, M. G., and Rosskopf, E. N. 2009. Greenhouse evaluation of Capsicum rootstocks for management of Meloidogyne incognita on grafted bell pepper. Nematropica 39:121–132.
  18. Kokalis-Burelle, N., and Rosskopf, E. N. 2010. Microplot evaluation of rootstocks for control of Meloidogyne incognita on grafted tomato, muskmelon, and watermelon. Journal of Nematology 43(3):166–171.
  19. Kokalis-Burelle, N., Iriarte, F. B., Butler, D. M., Hong, J., and Rosskopf, E. N. 2014. Nematode management in Florida vegetable and ornamental production. Outlooks on Pest Management. doi:10.1564/V25-Aug-00.
  20. Kubota, C., McClure, M. A., Kokalis-Burelle, N., Bausher,M. G., and Rosskopf, E. N. 2008. Vegetable grafting: History, use, and current technology status in North America. HortScience 43:1664–1669.
  21. Kunwar, S., Paret, M. L., Olson, S. M., Ritchie, L., Rich, J. R., Freeman, J., and McAvoy, T. 2014. Grafting using rootstocks with resistance to Ralsonia solanacearum against Meloidogyne incognita in tomato production. Plant Disease 99(1):119–124.
  22. Louws, F., Rivard, C., and Kubota, C. 2010. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae 127(2):127–146.
  23. Malik, N., and Vanden Born, W. H. 1987. False cleavers (Galium spurium L.) competition and control in rapeseed. Canadian Journal of Plant Science 67:839–844.
  24. Momma, N., Kobara, Y., Uematsu, S., Kita, N., and Shinmura, A. 2013. Development of biological soil disinfestation in Japan. Applied Microbiology and Biotechnology 97:3801–3809.
  25. Qiao, K., Wang, Z.,Wei, M.,Wang, H.,Wang, Y., and Wang, K. 2015. Evaluation of chemical alternatives to methyl bromide in tomato crops in China. Crop Protection 67:223–227.
  26. Rivard, C. L., and Louws, F. 2006. Grafting for disease resistance in heirloom tomatoes. North Carolina Cooperative Extension Service, AG-675, E07 45829.
  27. Rivard, C. L., O’Connell, S., Peet, M. M., and Louws, F. J. 2010. Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease 94:1015–1021.
  28. Rosskopf, E. N., Chellemi, D. O., Kokalis-Burelle, N., and Church, G. T. 2005. Alternatives to methyl bromide: A Florida perspective. Plant Health Prog doi:10.1094/PHP-2005-1027-01-RV.
  29. Rysin, O., and Louws, F. J. 2015. Decision tool for growers to evaluate economic impact of grafting technology adoption: An application to open-field conventional tomato production. HortTechnology 25:132–138.
  30. Shennan, C., Muramoto, J., Lamers, J., Mazzola, M., Rosskopf, E. N., Kokalis-Burelle, N., Momma, N., Butler, D. M., and Kobara, Y. 2014. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Horticulturae 1044:165–175.
  31. Sig~uenza, C., Schochow, M., Turini, T., and Ploeg, A. 2005. Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. Journal of Nematology 37:276–280.
  32. Thies, J. A., and Levi, A. 2007. Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. HortScience 42(7):1530–1533.
  33. Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S., and Levi, A. 2010. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease 94:1195–1199.
  34. Yates, S. R., Gan, J., Papiernik, S. K., Dungan, R., and Wang, D. 2002. Reducing fumigant emissions after soil application. Phytopathology 92:1344–134.