Methyl Bromide Alternatives for Control of Root-knot Nematode (Meloidogyne spp.) in Tomato Production in Florida


Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences


ISSN: 0022-300X
eISSN: 2640-396X





Volume / Issue / page

Related articles

VOLUME 49 , ISSUE 2 (June 2017) > List of articles

Methyl Bromide Alternatives for Control of Root-knot Nematode (Meloidogyne spp.) in Tomato Production in Florida


Keywords : 1, 3-dichloropropene, metam sodium, fumigation, plasticulture.

Citation Information : Journal of Nematology. Volume 49, Issue 2, Pages 140-149, DOI:

License : (CC BY 4.0)

Received Date : 23-August-2016 / Published Online: 24-July-2017



The following work was initiated to determine the scope of application methodology and fumigant combinations for
increasing efficacy of 1,3-dichloropropene (1,3-D) and metam sodium for management of root-knot nematodes (Meloidogyne spp.) in Florida. A series of five experiments were set up during spring and fall seasons to evaluate the potential of different fumigants, alone or in combination, in polyethylene film tomato production. The most promising chemical alternatives to methyl bromide, in terms of root-knot nematode management, were the combinations 1,3-D-chloropicrin, chloropicrin-proprietary solvent ,and 1,3-D-metam sodium. Sprayed or injected metam sodium generally provided only short-term nematode management and by harvest nematode infection was not different from the nontreated control. Drip-applied metam sodium gave good nematode management under high nematode pressure, but needs further verification to establish (i) the importance of soil moisture and temperature on treatment efficacy and (ii) whether similar management can be obtained with fewer than three drip tubes. Broadcast applications of 1,3-D showed better efficacy as compared to applications on a preformed raised bed. Fumigation did not increase tomato yields in spring when root-knot nematode pressure was low, but during fall all chemical treatments increased yields three to five-fold, as root-knot nematode was a major yield-limiting factor.

Content not available PDF Share



  1. Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D.,Soppe, R., and Shatley, D. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology 92:1349–1355.
  2. Anonymous. 1992. Methyl bromide: Its atmospheric science, technology and economics. Synthesis report. Methyl bromide interim scientific and technology and economic assessment. Nairobi, Kenya:United Nations Environment Programme.
  3. Anonymous. 2000. Economic implications of the methyl bromide phaseout. An economic research service report. Agriculture Information Bulletin Number 756. United States Department of Agriculture (USDA).
  4. Anonymous. 2002. Chemical methods of nematode management.
  5. Arling, J. 2015. Methyl bromide and the Montreal Protocol. Proceedings of 2015 Annual International Research Conference on Methyl bromide Alternatives and Emissions Reductions.
  6. Boesten, J. J., Van der Pas, L. J., Smelt, J. H., and Leistra, M. 1991. Transformation rate of methylisothiocyanate and 1,3-dichloropropene in water-saturated sandy subsoils. Netherlands Journal of 
    Agricultural Science 39:179–190.
  7. Braun, A. L., and Supkoff, D. M. 1994. Options to methyl bromide for the control of soil-borne diseases and pests in California with reference to the Netherlands. Pest management analysis and planning program, 24 pp.
  8. Cabrera, J. A., Wang, D., Gerik, J. S., and Gan, J. 2014. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest Management Science 70:1151–1157.
  9. Candole, B. L., Csinos, A. S., and Wang, D. 2007. Concentrations in soil and efficacy of drip-applied 1,3-D+chloropicrin and metam sodium in plastic-mulched sandy soil beds. Crop Protection 26:1801–1809.
  10. Csinos, A. S., Laska, J. E., and Childers, S. 2002. Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds. Pest Management Science 58:381–384.
  11. Desaeger, J. A. J., Eger, J. E., Csinos, A. S., Gilreath, J. P.,Olson, S. M., and Webster, T. M. 2004. Movement and biological activity of drip-applied 1,3-dichloropropene and chloropicrin in raised mulched beds in the southeastern USA. Pest Management Science 60:1220–1230.
  12. Desaeger, J., and Csinos, A. 2006. Root-knot nematode management in double crop plasticulture vegetables. Journal of Nematology 38:59–67.
  13. Dickson, D. W., and Hewlett, T. E. 1988. Efficacy of fumigant and non-fumigant nematicides for control of Meloidogyne arenaria on peanut. Annals of Applied Nematology (Journal of Nematology vol. 20,Supplement) 2:95–101.
  14. Dickson, D. W., Locascio, S. J., and Mitchell, D. J. 1999. Evaluating methyl bromide alternative fumigants on tomato under polyethylene mulch in Florida.
  15. Eger, J. E., Gilreath, J. P., and Noling, J. P. 2001. Effect of irrigation times on wetting patterns in Florida vegetable soils. Annual International Research. Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, Abstr. 48.
  16. Gerstl, Z., Milgelgrin, U., Krikun, J., and Yaron, B. 1977. Behavior and effectiveness of vapam applied to soil in irrigation water. Pp. 42– 50 in Behavior of pesticides in soil. M. Horowitz, ed. Proceedings of the Israel-France Symposium, 1975. Agricultural Research Organization. Bet Dagam, Israel: Special Publication 82.
  17. Gilreath, J. P., and Santos, B. M. 2004. Methyl bromide alternatives for weed and soilborne disease management in tomato (Lycopersicon esculentum). Crop Protection 23:1193–1198.
  18. Gilreath, J. P., Santos, B. M., Gilreath, P. R., Jones, J. P., and Noling, J. W. 2004a. Efficacy of 1,3-dichloropropene + chloropicrin application methods in combination with pebulate and napropamide in tomato. Crop Protection 23:1187–1191.
  19. Gilreath, J. P., Noling, J. W., and Santos, B. M. 2004b. Methyl bromide alternatives for pepper (Capsicum annuum) and cucumber (Cucumis sativus) rotations. Crop Protection 23:347–351.
  20. Gilreath, J. P., Santos, B. M., Gilreath, P. R., and Noling, J. W. 2005. Validation of 1,3-dichloropropene plus chloropicrin broadcast application in tomato grower fields. Journal of Vegetable Science 11:133–139.
  21. Gilreath, J. P., and Santos, B. M. 2008. Managing weeds and nematodes with combinations of methyl bromide alternatives in tomato. Crop Protection 27:648–652.
  22. Goring, C. A. I. 1967. Physical aspects of soil in relation to the action of fungicides. Annual Review of Phytopathology 5:285–318.
  23. Holbrook, C. C., Knauft, D. A., and Dickson, D. W. 1983. A technique for screening peanut for resistance to Meloidogyne arenaria. Plant Disease 57:957–958.
  24. Ingham, R. E., Hamm, P. B., Williams, R. E., and Swanson, W. H. 2000. Control of Paratrichodorus allius and corky ringspot disease of potato in the Columbia Basin of Oregon. Supplement to the Journal of Nematology 32:566–575.
  25. Lamberti, F. 2000. 1,3-D, a valid alternative to methyl bromide for the control of plant-parasitic nematodes.
  26. Leocata, S., Pirruccio, G., Medico, E., Myrta, A., and Greco, N. 2014.Dimethyl disulfide (DMDS): A new soil fumigant to control root-knot nematodes, Meloidogyne spp., in Protected crops in Sicily, Italy. Acta Horticulturae (ISHS) 1044:415–420.
  27. Locascio, S. J., Gilreath, J. P., Dickson, D. W., Kucharek, T. A.,Jones, J. P., and Noling, J. W. 1997. Fumigant alternatives to methyl bromide for polyethylene-mulched tomato. HortScience 32:1208–1211.
  28. Locascio, S. J., and Dickson, D. W. 1998. Metam sodium combined with chloropicrin as an alternative to methyl bromide.
  29. McGovern, R. J., Vavrina, C. S., Noling, J., Datnoff, L. A., and Yonce, H. D. 1998. Evaluation of application methods of metham sodium for management of fusarium crown and root rot in tomato in southwest Florida. Plant Disease 82:919–923.
  30. Munnecke, D. E., and Van Gundy, S. D. 1979. Movement of fumigants in soil, dosage responses, and differential effects. Annual Review of Phytopathology 17:405–429.
  31. Neher, D. 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33:161–168.
  32. Nelson, S. D., Dickson, D. W., Ajwa, H. A., and Sullivan, D. A. 2004. Efficacy of metam sodium under drip and surface spray application in Florida tomato production. Subtropical Plant Science 56:16–20.
  33. Noling, J. W., and Becker, J. O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. Supplement to the Journal of Nematology 26:573–586.
  34. Noling, J. W., Botts, D. A., and MacRae, A. W. 2010. Chapter 43:Alternatives to methyl bromide soil fumigation for florida fruit and vegetable production. Pp. 301–316 in S. M. Olson and E. H. Simonne,eds. Vegetable Production Handbook for Florida. University of Florida, SP170.
  35. Ou, L., Thomas, J. E., Allen, L. H., Jr., Vu, J. C., and Dickson, D. W.2006. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots. Archives of Environmental Contamination and Toxicology 51:164–173.
  36. Overman, A. J., and Jones, J. P. 1984. Soil fumigants for control of nematodes, fusarium wilt and fusarium crown rot on tomato. Proceeding of the Florida State Horticultural Society 97:194–197.
  37. Overman, A. J., and Jones, J. P. 1986. Soil solarization, reaction and fumigation effects on double-cropped tomato under full-bed mulch. Proceeding of the Florida State Horticultural Society 99:315–318.
  38. Rich, J. R., Olson, S. M., and Noling, J. W. 2003. Management of root-knot nematodes and nutsedge with fumigant alternatives to methyl bromide in north Florida U.S.A. tomato production. Nematologia Mediterranea 31:163–168.
  39. Roberts, P. A., Magyarosy, A. C., Matthews, W. C., and May, D. M.1988. Effects of metam-sodium applied by drip irrigation on root-knot nematodes, Pythium ultimum and Fusarium sp. in soil and on carrot and tomato roots. Plant Disease 72:213–217.
  40. Rosskopf, E. N., Church, G., Holzinger, J., Yandoc-Ables, C., and Noling, J. 2006. Efficacy of dimethyl disulfide (DMDS) for management of nematodes and fungal plant pathogens. Phytopathology 96: S100.
  41. Ruzo, L. O. 2006. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Management Science 62:99–113.
  42. Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., and Norton, J. A. 2006a. Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Protection 25:690–695.
  43. Santos, B. M., Gilreath, J. P., Motis, T. N., von Hulten, M., and Siham, M. N. 2006b. Effects of mulch types and concentrations of 1,3-dichloropropene plus chloropicrin on fumigant retention and nutsedge control. HortTechnology 16:637–640.
  44. Schneider, S. M., Ajwa, H. A., Trout, T. J., and Gao, S. 2008. Nematode control from shank-and-drip-applied fumigant alternatives to methyl bromide. HortScience 43(6):1826–1832.
  45. Smelt, J. H., and Leistra, M. 1974. Conversion of metham-sodium to methyl isothiocyanate and basic data on the behaviour of methyl isothiocyanate. Pesticide Science 5:401–407.
  46. Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., LaMondia, J.,McKenry, M. V., and Noling, J. W. 2010. Managing nematodes without methyl bromide. Annual Review of Phytopathology 48:311–328.
  47. Zeck, W. M. 1971. A rating scheme for field evaluation of root-knot nematode infestation. Pflanzenschutz Nachrichten Bayer 24:141–144.