First report of molecular characterization and phylogeny of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae)

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Nematology

Society of Nematologists

Subject: Life Sciences

GET ALERTS DONATE

ISSN: 0022-300X
eISSN: 2640-396X

DESCRIPTION

39
Reader(s)
80
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

First report of molecular characterization and phylogeny of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae)

Malorri R. Hughes * / Deborah A. Duffield / Dana K. Howe / Dee R. Denver

Keywords : 18S rRNA, Western pocket gophers, Thomomys , Trichuridae, Trichuris , Trichuris fossor , Systematics, Whipworm

Citation Information : Journal of Nematology. Volume 52, Pages 1-6, DOI: https://doi.org/10.21307/jofnem-2020-036

License : (CC-BY-4.0)

Received Date : 07-November-2019 / Published Online: 24-April-2020

ARTICLE

ABSTRACT

Because species of Trichuris are morphologically similar and ranges of host preference are variable, using molecular data to evaluate species delineations is essential for properly quantifying biodiversity of and relationships within Trichuridae. Trichuris fossor has been reported from Thomomys spp. (Rodentia: Geomyidae, ‘pocket gophers’) hosts based on morphological features alone. Partial 18S rRNA sequences for specimens identified as T. fossor based on morphology, along with sequences from 26 additional taxa, were used for a phylogenetic analysis. Evolutionary histories were constructed using maximum likelihood and Bayesian inference. In both analyses, the specimens fell within the Trichuris clade with 100% support and formed a distinct subclade with 100% support. These results confirm that T. fossor is a distinct species and represent the first molecular report for it. Relatedness among species within the family were well resolved in the BI tree. This study represents an initial effort to obtain a more comprehensive view of Trichuridae by including a new clade member, T. fossor. A better understanding of Trichuridae phylogeny could contribute to further characterization of host-associations, including species that infect livestock and humans.

Graphical ABSTRACT

Nematodes of the genus Trichuris (Roederer, 1761) (‘whipworms’) inhabit the ceca of a wide variety of mammalian hosts worldwide (Callejón et al., 2015; Robles et al., 2018). Approximately 80 species are described based mostly on reports that have used biometrics, morphological features, host(s) infected, and/or geography (Guardone et al., 2013; Doležalová et al., 2015; Callejón et al., 2016). These characteristics are not reliable in all instances – many species have similar attributes with overlapping ranges of measurements (Callejón et al., 2015, 2016; Vejl et al., 2017) and host preference may be more variable than previously thought (Doležalová et al., 2015). Approximately 24 species been reported from rodents, many of which exhibit comparable morphological patterns (Robles et al., 2014; Doležalová et al., 2015; Eberhardt et al., 2019).

Understanding the diversity and phylogeny of whipworms is important; false classification limits our acuity of biogeography and conceals the zoonotic potential of trichurids (Callejón et al., 2015; Doležalová et al., 2015). Certain species, e.g. T. suis (Schrank, 1788) and T. trichiura (Linnaeus, 1771), are problematic in developing countries and have vast socioeconomic impacts via human or livestock infections (nearly 1 billion human trichuriasis infections are reported globally each year) (Jex et al., 2014). Other species, such as T. muris (Schrank, 1788; Hall, 1916), have been gathering attention in biomedical research for potential use in immunosuppression therapy (Feliu et al., 2000). A more comprehensive understanding of relationships within this group would enable predictions about how close relatives interact with their host(s).

Relationships within Trichuridae have not been well resolved using genetic approaches; results differ depending on the gene(s) sequenced and the approach used for phylogenetic reconstructions (Callejón et al., 2015). Mitochondrial data, primarily cox1, have been commonly used and have allowed for high resolution of closely related lineages; however, it may be less credible to use with Trichuris species due to the degree of hybridization and maternal mitochondrial heredity seen in this genus (Callejón et al., 2015; Doležalová et al., 2015). Nuclear data have provided higher support for relationships than mitochondrial data (Doležalová et al., 2015). The nuclear ITS1-ITS2 genes offer markers that allow closely related species to be detected (Eberhardt et al., 2019) and ITS1-5.8S-ITS2 has been used to show relations among ruminant- and rodent-infecting species (Doležalová et al., 2015). However, the number of variants of RNA genes (including the ITS2 region) makes their utility in disentangling the phylogeny of Trichuris less opportune, particularly given that the amount of ploidy is unknown (Doležalová et al., 2015). The 18S rRNA gene has been used to infer the placement of trichurids within Nematoda as well as to elucidate relationships within Trichuridae and is less prone to result in unclear multiple alignments (Callejón et al., 2013, 2015; Guardone et al., 2013; Doležalová et al., 2015). To date, both nuclear and mitochondrial data have suggested that Trichuris may be a polyphyletic genus; species or groups within the genus, e.g. T. trichiura and T. suis, may also be polyphyletic (Doležalová et al., 2015).

Trichuris fossor (Hall, 1916) has been reported only from hosts belonging to the genus Thomomys (Wied-Neuwied 1839) (Rodentia: Geomyidae) (Todd and Lepp, 1972; Gardner, 1985; but see Falcón-Ordaz, 1993). Descriptions have been based on morphology and host preference and Trichuris from geomyid hosts have never been sequenced (Eberhardt et al., 2019). The aim of this study was to serve as the first molecular report for T. fossor. The 18S rRNA gene was sequenced for four specimens identified putatively as T. fossor collected from separate Thomomys (western pocket gophers) species hosts.

Materials and methods

Thomomys bulbivorus (Richardson, 1829; Brandt, 1855) were salvaged from trappers working in Yamhill County, Oregon, in April 2018. Thomomys botta e (Eydoux and Gervais, 1836) , T. mazama (Merriam, 1897), and T. talpoides (Richardson, 1828) were collected from Curry, Jackson, and Grant County, respectively, Oregon in August 2019. Complete intestinal tracts were examined following procedures outlined by Gardner and Jasmer (1983). Collected parasites were stored in 95% ethanol. Based on morphology and previous records for the hosts, nematodes found in the ceca were tentatively identified as T. fossor (Chandler, 1945; Todd and Lepp, 1972; Gardner, 1985).

DNA extraction, amplification, and sequencing were performed on individuals from each host species. Before beginning isolation, nematodes were transferred to 1.5 mL microcentrifuge tubes and repeatedly rinsed with DI water (5 rinses of 1 mL dH2O) to remove all traces of ethanol. Nematodes were then transferred into fresh PCR tubes and mechanically homogenized before extracting with the DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer’s protocols. Overlapping fragments of 18S rRNA were amplified using the primers G18S4F (5′-GCTTGTCTCAAAGATTAAGCC-3′), 136R (5′-TGATCCTTCTCGCAGGTTCACCTAC-3′), 652F (5′-GCAGCCGCGGTAATTCCAGCTC-3′), and 647R (5′-CATTCTTGGCAAATGCTTTCGC-3′) (Callejón et al., 2013). After PCR products were visualized on a 1.5% agarose gel, they were SPRI-purified (Elkin et al., 2001) and prepared for direct end sequencing. Sequencing reactions were processed by the Center for Genome Research and Biocomputing (CGRB; Oregon State University, Corvallis, OR).

Sequences were examined using MEGA v. 7.0.26 (Kumar et al., 2016). Forward and reverse sequences for individual segments were combined by alignment using MUSCLE, followed by combining the two overlapping segments. Low-quality ends were trimmed and a BLAST search against the NCBI nr database was performed. Sequence information from the BLAST match for 26 related taxa was incorporated into a phylogenetic comparison. These additional Trichuris spp. included in the analyses infect dogs, humans, pigs, sheep, and other rodents (murids, cricetids, and arvicolids). Sequences were aligned using MUSCLE, ends were trimmed, and 1,644 base pairs remained. The newly generated sequences were submitted to the GenBank database under accession numbers MT071351, MT071352, MT071353, and MT071354.

Phylogenetic analyses were performed in MEGA v. 7.0.26 (Kumar et al., 2016) and in BEAST2 v. 2.6.1 (Bouckaert et al., 2019). MEGA determined that Kimura 2-parameter with invariant sites and a gamma distribution was the best fit substitution model for this data based on Bayesian information criterion. An evolutionary history was inferred based on this model using the maximum likelihood (ML) method and a consensus tree was generated using 1,000 bootstrapping replicates in MEGA. The Bayesian inference (BI) analysis was prepared in BEAUti v. 2.6.0 (Bouckaert et al., 2019) and performed in BEAST2 v. 2.6.0 (Bouckaert et al., 2019). The analysis used the HKY substitution model with equal frequencies (K2P + I + G is not available in BEAST2) and ran for 1×107 generations. Tracer v 1.7.1 (Rambaut et al., 2018) was used to evaluate convergence and ensure that effective sample size values for each parameter were met (all > 1,000). Tree files were combined in LogCombiner v. 2.6.0 (Bouckaert et al., 2019) and a maximum clade credibility (MCC) tree was constructed using TreeAnnotator v. 2.6.0 (Bouckaert et al., 2019) with posterior probabilities limited 50% and a burn-in percentage of 10%. FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize the MCC tree.

Results and discussion

Trichuris, Trichinella, and capillariid species represented highly supported (100%) monophyletic groups (Figs. 1, 2). The capillariid and trichurid clades formed sister taxa with 100% support in both analyses. These findings are consistent with previous studies (Feldman and Ramirez, 2014; Borba et al., 2019). Our new sequences fell within the Trichuris clade with 100% node support and formed an independent subclade with 100% support in both analyses. Four subclades were present within Trichuris: (i) T. discolor, T. ovis, T. skrjabini, T. leporis, (ii) T. trichiura, T. suis, unidentified Trichuris sp. (= T. colobae, see Cutillas et al., 2014), (iii) T. vulpis, T. muris, T. arvicolae, and (iv) the new sequences from T. fossor. The composition of previously studied species in subclades 1 to 3 are consistent with results from studies that used nuclear, mitochondrial, and/or concatenated data (Callejón et al., 2013, 2015; Feldman and Ramirez, 2014; Doležalová et al., 2015). In the ML analysis, the relatedness of the Trichuris subclades to one another had low (< 70%) support or were unresolved (Fig. 1). The BI analysis offered better resolution among trichurids (Fig. 2). The T. fossor subclade was most closely related to the T. arvicolae, T. muris, and T. vulpis subclade; the remaining two subclades were more closely related to one another than to the other two subclades.

Figure 1:

Bootstrap consensus tree (1,000 replicates) generated using the maximum likelihood method based on the K2P + I + G model. Bootstrap support values of 70% or greater are indicated next to nodes. Hosts are included in parentheses next to the T. fossor sequences.

10.21307_jofnem-2020-036-f001.jpg
Figure 2:

Maximum clade credibility consensus tree generated using the Bayesian inference method under the HKY model. Posterior probabilities for nodes above 70% are displayed. Hosts are included in parentheses next to the T. fossor sequences.

10.21307_jofnem-2020-036-f002.jpg

The results of the phylogenetic analyses verify that, based on molecular data, T. fossor is a distinct species. This is the first report of T. fossor from a T. mazama host. Trichuris fossor from T. bulbivorus host was an outgroup to other T. fossor specimens in both analyses. In the BI analysis, T. fossor from T. bottae and T. talpoides were sister taxa with the specimen from T. mazama as an outgroup. This suggests that variability likely exists among T. fossor from different host species, but 18S DNA is not reliable for determining whether genetic distances among Trichuris fall within the range of intraspecific variation (Guardone et al., 2013).

This work represents a preliminary step in investigating the phylogeny of T. fossor. Examining more molecular data and including different genes will likely show increased resolution of the closest relatives of T. fossor and provide a more comprehensive view of this phylogeny. Comparing other markers of nuclear and organellar DNA may be helpful (Doležalová et al., 2015) as well as examining mitochondrial data (e.g. cox1 gene), especially given there is support that it is more reliable when separating closely related species than that of 18S rRNA (Guardone et al., 2013). Incorporating T. fossor from different host species and from different geographic areas will also be valuable as lineages within the T. fossor subclade could be uncovered (Callejón et al., 2010).

Acknowledgements

The authors sincerely thank Emily Wolfe, Alexandra Gibson, Dr. Annie Lindgren, Katherine Carter, Jessica Persinger, Nathan Stewart, Dr. Scott Gardner, the professional trappers who donated pocket gopher specimens, and the student volunteers at Portland State University who assisted with field work, pocket gopher necropsies, and specimen preparation.

References


  1. Borba, V. H. , Machado-Silva, J. R. , Le Bailly, M. and Iñiguez, A. M. 2019. Worldwide paleodistribution of capillariid parasites: paleoparasitology, current status of phylogeny and taxonomic perspectives. PloS One 14:e0216150, https://doi.org/10.1371/journal.pone.0216150
  2. Bouckaert, R. , Vaughan, T. G. , Barido-Sottani, J. , Duchêne, S. , Fourment, M. , Gavryushkina, A. , Heled, J. , Jones, G. , Kühnert, D. , De Maio, N. , Matchiner, M. , Mendes, F. K. , Müller, N. F. , Ogilvie, H. A. , du Plessis, L. , Popinga, A. , Rambaut, A. , Rasmussen, D. , Siveroni, I. , Suchard, M. A. , Wu, C. , Xie, D. , Zhang, C. , Stadler, T. and Drummond, A. J. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650.
  3. Brandt, J. F. (1855), Beiträge sur nähern kenntniss der säugethiere Russlands, Buchdruckerei der Kaiserlichen Akademie der Wissenschaften.
  4. Callejón, R. , Cutillas, C. and Nadler, S. A. 2015. Nuclear and mitochondrial genes for inferring Trichuris phylogeny. Parasitology Research 114:4591–4599.
  5. Callejón, R. , Robles, Md. R. , Panei, C. J. and Cutillas, C. 2016. Molecular diversification of Trichuris spp. From Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences. Parasitology Research 115:2933–2945.
  6. Callejón, R. , Nadler, S. , De Rojas, M. , Zurita, A. , Petrasova, J. and Cutillas, C. 2013. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA. Parasitology Research 112:3933–3949.
  7. Callejón, R. , De Rojas, M. , Nieberding, C. , Foronda, P. , Feliú, C. , Guevara, D. and Cutillas, C. 2010. Molecular evolution of Trichuris muris isolated from different Muridae hosts in Europe. Parasitology Research 107:631–641.
  8. Chandler, A. C. 1945. Trichuris species from California rodents. Journal of Parasitology 31:284–286.
  9. Cutillas, C. , Rojas, Md. , Zurita, A. , Oliveros, R. and Callejón, R. 2014. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis . Parasitology Research 113:2725–2732.
  10. Doležalová, J. , Oborník, M. , Hajdušková, E. , Jirků, M. , Petržeková, K. J. , Bolechová, P. , Cutillas, C. , Callejón, R. , Jaroš, J. , Beránková, Z. and Modrý, D. 2015. How many species of whipworms do we share? Whipworms from man and other primates form two phylogenetic lineages. Folia Parasitologica 62:1–12.
  11. Eberhardt, A. T. , Robles, Md. R. , Monje, L. D. , Beldomenico, P. M. and Callejón, R. 2019. A new Trichuris species (Nematoda: Trichuridae) from capybaras: morphological-molecular characterization and phylogenetic relationships. Acta Tropica 190:244–252.
  12. Elkin, C. J. , Richardson, P. M. , Fourcade, H. M. , Hammon, N. M. , Pollard, M. J. , Predki, P. F. , Glavina, T. and Hawkins, T. L. 2001. High-throughput plasmid purification for capillary sequencing. Genome Research 11:1269–1274.
  13. Eydoux, F. and Gervais, P. 1836. Sur le genre Paephagomys et quelques autres rongeurs qui l’voisinent. Magasin de Zoologie Journal, Paris 6:17–24.
  14. Falcón-Ordaz, J. 1993. Estudio taxonómico de los nemátodos parásitos de roedores de los géneros Peromyscus y Liomys, de Huehuetla y Atlatilpan, Estado de Hidalgo Ph.D. dissertation, Universidad Nacional Autónoma de México, México.
  15. Feldman, S. H. and Ramirez, M. P. 2014. Molecular phylogeny of Pseudocapillaroides xenopi (Moravec et Cosgrov 1982) and development of a quantitative PCR assay for its detection in aquarium sediment. Journal of the American Association for Laboratory Animal Science 53:668–674.
  16. Feliu, C. , Spakulová, M. , Casanova, J. C. , Renaud, F. , Morand, S. , Hugot, J. P. , Santalla, F. and Durand, P. 2000. Genetic and morphological heterogeneity in small rodent whipworms in southwestern Europe: characterization of Trichuris muris and description of Trichuris arvicolae n. sp. (Nematoda: Trichuridae). Journal of Parasitology 86:442–449.
  17. Gardner, S. L. 1985. Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda). Canadian Journal of Zoology 63:1463–1469.
  18. Gardner, S. L. and Jasmer, D. P. 1983. Heligmosomoides thomomyos sp. n. (Nematoda: Heligmosomidae) from Pocket Gophers, Thomomys spp. (Rodentia: Geomyidae), in Oregon and California. Proceedings of the Helminthological Society Washington 50:278–284.
  19. Guardone, L. , Deplazes, P. , Macchioni, F. , Magi, M. and Mathis, A. 2013. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Veterinary Parasitology 197:36–369.
  20. Hall, M. C. 1916. Nematode parasites of mammals of the orders Rodentia, Lagomorpha, and Hyracoidea. Proceedings of the United States National Museum 50:1–258.
  21. Jex, A. R. , Nejsum, P. , Schwarz, E. M. , Hu, L. , Young, N. D. , Hall, R. S. , Korhonen, P. K. , Liao, S. , Thamsborg, S. , Xia, J. , Xu, P. , Wang, S. , Scheerlinck, J. , Hofmann, A. , Sternberg, P. W. , Wang, J. and Gasser, R. B. 2014. Genome and transcriptome of the porcine whipworm Trichuris suis . Nature Genetics 46:701–708.
  22. Kumar, S. , Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874.
  23. Linnaeus, C. 1771. Mantissa plantarum altera. Regni Animalis Appendix. Stockholm: Laurentii Salvii.
  24. Merriam, C. H. 1897. Descriptions of eight new pocket gophers of the genus Thomomys, from Oregon, California, and Nevada. Proceedings of the Biological Society of Washington 11:213–216.
  25. Rambaut, A. , Drummond, A. J. , Xie, D. , Baele, G. and Suchard, M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–904, doi: 10.1093/sysbio/syy032.
  26. Richardson, J. 1828. Short characters of a few quadrupeds procured on Capt. Franklin’s late expedition. The Zoological Journal 3:516–520.
  27. Richardson 1829. Fauna Boreali-Americana: part first containing the quadrupeds John Murray Press, London, Reprinted 1974, New York, NY: Arno Press.
  28. Robles, Md. R. , Cutillas, C. and Callejón, R. 2018. Morpholocial-molecular characterization and phylogenetic relationships of a new Trichuris species (Nematoda: Trichuridae) parasitic on Holochilus chacarius (Cricetidae: Sigmodontinae) from the Chaco ecoregion (Argentina). Infection, Genetics and Evolution 58:66–76.
  29. Robles, Md. R. , Cutillas, C. , Javier Panei, C. and Callejón, R. 2014. Morphological and molecular characterization of a new Trichuris species (Nematoda-Trichuridae), and phylogenetic relationships of Trichuris species of Cricetid Rodents from Argentina. PLoS One 9:e112069.
  30. Roederer, J. G. 1761. Nachrichten von der Trichuriden, der Societät der Wissenschaften in Göttingen. Göttingische Anzeigen von gelehrten Sachen: Unter der Aufsicht der Königliche Gesellschaft der Wissenschaften, Part 25, 1761, pp. 24–245.
  31. Schrank, F. Pv. 1788. Verzeichniß der bisher hinlänglich bekannten eingeweidewürmer: nebst einer abhandlung über ihre anverwandtschaften, Vol. 2 Akademie der Wissenschaften Austrian Academy of Sciences Press, Strobl.
  32. Todd, K. S. Jr. and Lepp, D. L. 1972. Redescription of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae) from the Northern Pocket Gopher, Thomomys talpoides . Proceedings of the Helminthological Society of Washington 39:203–205.
  33. Vejl, P. , Nechybová, S. , Peřinková, P. , Melounová, M. , Sedláková, V. , Vašek, J. , Čilová, D. , Rylková, K. , Jankovská, I. , Vadlejch, J. and Langrová, I. 2017. Reliable molecular differentiation of Trichuris ovis and Trichuris discolor from sheep (Ovis orientalis aries) and roe deer (Capreolus capreolus) and morphological characterisation of their females: morphology does not work sufficiently. Journal of Parasitology Research 116:2199–2210.
  34. Wied-Neuwied, M. Z. P. 1839. Eine neue gattung der wühlmäuse. Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae 19:375–384.
XML PDF Share

FIGURES & TABLES

Figure 1:

Bootstrap consensus tree (1,000 replicates) generated using the maximum likelihood method based on the K2P + I + G model. Bootstrap support values of 70% or greater are indicated next to nodes. Hosts are included in parentheses next to the T. fossor sequences.

Full Size   |   Slide (.pptx)

Figure 2:

Maximum clade credibility consensus tree generated using the Bayesian inference method under the HKY model. Posterior probabilities for nodes above 70% are displayed. Hosts are included in parentheses next to the T. fossor sequences.

Full Size   |   Slide (.pptx)

REFERENCES

  1. Borba, V. H. , Machado-Silva, J. R. , Le Bailly, M. and Iñiguez, A. M. 2019. Worldwide paleodistribution of capillariid parasites: paleoparasitology, current status of phylogeny and taxonomic perspectives. PloS One 14:e0216150, https://doi.org/10.1371/journal.pone.0216150
  2. Bouckaert, R. , Vaughan, T. G. , Barido-Sottani, J. , Duchêne, S. , Fourment, M. , Gavryushkina, A. , Heled, J. , Jones, G. , Kühnert, D. , De Maio, N. , Matchiner, M. , Mendes, F. K. , Müller, N. F. , Ogilvie, H. A. , du Plessis, L. , Popinga, A. , Rambaut, A. , Rasmussen, D. , Siveroni, I. , Suchard, M. A. , Wu, C. , Xie, D. , Zhang, C. , Stadler, T. and Drummond, A. J. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650.
  3. Brandt, J. F. (1855), Beiträge sur nähern kenntniss der säugethiere Russlands, Buchdruckerei der Kaiserlichen Akademie der Wissenschaften.
  4. Callejón, R. , Cutillas, C. and Nadler, S. A. 2015. Nuclear and mitochondrial genes for inferring Trichuris phylogeny. Parasitology Research 114:4591–4599.
  5. Callejón, R. , Robles, Md. R. , Panei, C. J. and Cutillas, C. 2016. Molecular diversification of Trichuris spp. From Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences. Parasitology Research 115:2933–2945.
  6. Callejón, R. , Nadler, S. , De Rojas, M. , Zurita, A. , Petrasova, J. and Cutillas, C. 2013. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA. Parasitology Research 112:3933–3949.
  7. Callejón, R. , De Rojas, M. , Nieberding, C. , Foronda, P. , Feliú, C. , Guevara, D. and Cutillas, C. 2010. Molecular evolution of Trichuris muris isolated from different Muridae hosts in Europe. Parasitology Research 107:631–641.
  8. Chandler, A. C. 1945. Trichuris species from California rodents. Journal of Parasitology 31:284–286.
  9. Cutillas, C. , Rojas, Md. , Zurita, A. , Oliveros, R. and Callejón, R. 2014. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis . Parasitology Research 113:2725–2732.
  10. Doležalová, J. , Oborník, M. , Hajdušková, E. , Jirků, M. , Petržeková, K. J. , Bolechová, P. , Cutillas, C. , Callejón, R. , Jaroš, J. , Beránková, Z. and Modrý, D. 2015. How many species of whipworms do we share? Whipworms from man and other primates form two phylogenetic lineages. Folia Parasitologica 62:1–12.
  11. Eberhardt, A. T. , Robles, Md. R. , Monje, L. D. , Beldomenico, P. M. and Callejón, R. 2019. A new Trichuris species (Nematoda: Trichuridae) from capybaras: morphological-molecular characterization and phylogenetic relationships. Acta Tropica 190:244–252.
  12. Elkin, C. J. , Richardson, P. M. , Fourcade, H. M. , Hammon, N. M. , Pollard, M. J. , Predki, P. F. , Glavina, T. and Hawkins, T. L. 2001. High-throughput plasmid purification for capillary sequencing. Genome Research 11:1269–1274.
  13. Eydoux, F. and Gervais, P. 1836. Sur le genre Paephagomys et quelques autres rongeurs qui l’voisinent. Magasin de Zoologie Journal, Paris 6:17–24.
  14. Falcón-Ordaz, J. 1993. Estudio taxonómico de los nemátodos parásitos de roedores de los géneros Peromyscus y Liomys, de Huehuetla y Atlatilpan, Estado de Hidalgo Ph.D. dissertation, Universidad Nacional Autónoma de México, México.
  15. Feldman, S. H. and Ramirez, M. P. 2014. Molecular phylogeny of Pseudocapillaroides xenopi (Moravec et Cosgrov 1982) and development of a quantitative PCR assay for its detection in aquarium sediment. Journal of the American Association for Laboratory Animal Science 53:668–674.
  16. Feliu, C. , Spakulová, M. , Casanova, J. C. , Renaud, F. , Morand, S. , Hugot, J. P. , Santalla, F. and Durand, P. 2000. Genetic and morphological heterogeneity in small rodent whipworms in southwestern Europe: characterization of Trichuris muris and description of Trichuris arvicolae n. sp. (Nematoda: Trichuridae). Journal of Parasitology 86:442–449.
  17. Gardner, S. L. 1985. Helminth parasites of Thomomys bulbivorus (Richardson) (Rodentia: Geomyidae), with the description of a new species of Hymenolepis (Cestoda). Canadian Journal of Zoology 63:1463–1469.
  18. Gardner, S. L. and Jasmer, D. P. 1983. Heligmosomoides thomomyos sp. n. (Nematoda: Heligmosomidae) from Pocket Gophers, Thomomys spp. (Rodentia: Geomyidae), in Oregon and California. Proceedings of the Helminthological Society Washington 50:278–284.
  19. Guardone, L. , Deplazes, P. , Macchioni, F. , Magi, M. and Mathis, A. 2013. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Veterinary Parasitology 197:36–369.
  20. Hall, M. C. 1916. Nematode parasites of mammals of the orders Rodentia, Lagomorpha, and Hyracoidea. Proceedings of the United States National Museum 50:1–258.
  21. Jex, A. R. , Nejsum, P. , Schwarz, E. M. , Hu, L. , Young, N. D. , Hall, R. S. , Korhonen, P. K. , Liao, S. , Thamsborg, S. , Xia, J. , Xu, P. , Wang, S. , Scheerlinck, J. , Hofmann, A. , Sternberg, P. W. , Wang, J. and Gasser, R. B. 2014. Genome and transcriptome of the porcine whipworm Trichuris suis . Nature Genetics 46:701–708.
  22. Kumar, S. , Stecher, G. and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870–1874.
  23. Linnaeus, C. 1771. Mantissa plantarum altera. Regni Animalis Appendix. Stockholm: Laurentii Salvii.
  24. Merriam, C. H. 1897. Descriptions of eight new pocket gophers of the genus Thomomys, from Oregon, California, and Nevada. Proceedings of the Biological Society of Washington 11:213–216.
  25. Rambaut, A. , Drummond, A. J. , Xie, D. , Baele, G. and Suchard, M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–904, doi: 10.1093/sysbio/syy032.
  26. Richardson, J. 1828. Short characters of a few quadrupeds procured on Capt. Franklin’s late expedition. The Zoological Journal 3:516–520.
  27. Richardson 1829. Fauna Boreali-Americana: part first containing the quadrupeds John Murray Press, London, Reprinted 1974, New York, NY: Arno Press.
  28. Robles, Md. R. , Cutillas, C. and Callejón, R. 2018. Morpholocial-molecular characterization and phylogenetic relationships of a new Trichuris species (Nematoda: Trichuridae) parasitic on Holochilus chacarius (Cricetidae: Sigmodontinae) from the Chaco ecoregion (Argentina). Infection, Genetics and Evolution 58:66–76.
  29. Robles, Md. R. , Cutillas, C. , Javier Panei, C. and Callejón, R. 2014. Morphological and molecular characterization of a new Trichuris species (Nematoda-Trichuridae), and phylogenetic relationships of Trichuris species of Cricetid Rodents from Argentina. PLoS One 9:e112069.
  30. Roederer, J. G. 1761. Nachrichten von der Trichuriden, der Societät der Wissenschaften in Göttingen. Göttingische Anzeigen von gelehrten Sachen: Unter der Aufsicht der Königliche Gesellschaft der Wissenschaften, Part 25, 1761, pp. 24–245.
  31. Schrank, F. Pv. 1788. Verzeichniß der bisher hinlänglich bekannten eingeweidewürmer: nebst einer abhandlung über ihre anverwandtschaften, Vol. 2 Akademie der Wissenschaften Austrian Academy of Sciences Press, Strobl.
  32. Todd, K. S. Jr. and Lepp, D. L. 1972. Redescription of Trichuris fossor Hall, 1916 (Nematoda: Trichuridae) from the Northern Pocket Gopher, Thomomys talpoides . Proceedings of the Helminthological Society of Washington 39:203–205.
  33. Vejl, P. , Nechybová, S. , Peřinková, P. , Melounová, M. , Sedláková, V. , Vašek, J. , Čilová, D. , Rylková, K. , Jankovská, I. , Vadlejch, J. and Langrová, I. 2017. Reliable molecular differentiation of Trichuris ovis and Trichuris discolor from sheep (Ovis orientalis aries) and roe deer (Capreolus capreolus) and morphological characterisation of their females: morphology does not work sufficiently. Journal of Parasitology Research 116:2199–2210.
  34. Wied-Neuwied, M. Z. P. 1839. Eine neue gattung der wühlmäuse. Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae 19:375–384.

EXTRA FILES

COMMENTS