Metagenomic Profiling of the Bacterial Community Changes from Koji to Mash Stage in the Brewing of Soy Sauce


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 4 (December 2017) > List of articles

Metagenomic Profiling of the Bacterial Community Changes from Koji to Mash Stage in the Brewing of Soy Sauce

Hongbin Wang / Quanzeng Wei / Shuqi Gui / Yongrui Feng / Yong Zhang / Yihan Liu / Fuping Lu *

Keywords : metagenomics, microbial community, next-generation sequencing, soy sauce fermentation

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 4, Pages 537-541, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 07-December-2016 / Accepted: 24-May-2017 / Published Online: 04-December-2017



The improvement of soy sauce fermentation is restricted by the insufficient information on bacterial community. In this study, bacterial communities in the koji and mash stage were compared based on next-generation sequencing technology. A total of 29 genera were identi­fied in the koji stage, while 34 in the mash stage. After koji stage, 7 genera disappeared and 12 new genera appeared in the mash stage. The dominant bacteria were Kurthia, Weissella and Staphylococcus in the koji stage and Staphylococcus, Kurthia, Enterococcus and Leuconostoc in the mash stage. The results provided insights into the microbial communities involved in soy sauce fermentation.

Content not available PDF Share



Altschul S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang,W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.


Chun J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim andY.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int.J. Syst. Evol. Microbiol. 57: 2259–2261.


Dai X., Y. Zhu, Y. Luo, L. Song, D. Liu, L. Liu, F. Chen, M. Wang, J. Li, X. Zeng, Z. Dong, S. Hu, L. Li, J. Xu, L. Huang and X. Dong. 2012. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7.


Goodfellow M., M. Collins and D. Minnikin. 1980. Fatty acid and polar lipid composition in the classification of Kurthia. J. Appl. Microbiol. 48: 269–276.


Guan L., K.H. Cho and J.-H. Lee. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101–113.


Huse S.M., L. Dethlefsen, J.A. Huber, D.M. Welch, D.A. Relman and M.L. Sogin. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 4: 1–10.


Ito H. and K. Dou. 1994. Microorganisms of miso and soysauce. Jpn. J. Food Microbiol. 11: 151–157.


Kakizaki E., Y. Ogura, S. Kozawa, S. Nishida, T. Uchiyama, T. Hayashi and N. Yukawa. 2012. Detection of diverse aquatic microbes in blood and organs of drowning victims: First metagenomic approach using high-throughput 454-pyrosequencing. Forensic Sci. Int. 220: 135–146.


Kapardar R. K., R. Ranjan, A. Grover, M. Puri and R. Sharma. 2010. Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome. Bioresour. Technol. 101: 3917–3924.


Liaw R.-B., M.-P. Cheng, M.-C. Wu and C.-Y. Lee. 2010. Use of metagenomic approaches to isolate lipolytic genes from activated sludge. Bioresour. Technol. 101: 8323–8329.


Mamlouk D., C. Hidalgo, M.J. Torija and M. Gullo. 2011. Evaluation and optimisation of bacterial genomic DNA extraction for no-culture techniques applied to vinegars. Food Microbiol. 28: 1374–1379.


Ni Z., W. Xu, W. Dou, H. Xu and Z. Xu. 2010. Comparison of total microbial DNA extraction methods from solid-culture of Zhenjiang vinegar. Wei Sheng Wu Xue Bao 50: 119.


Ovreås L., L. Forney, F.L. Daae and V. Torsvik. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63: 3367–3373.


Röling W.F.M., A. Apriyantono and H.W. van Verseveld. 1996. Comparison between traditional and industrial soy sauce (kecap) fermentation in Indonesia. J. Ferment. Bioeng. 81: 275–278.


Steele D.B., M.J. Fiske, B.P. Steele and V.C. Kelley. 1992. Production of a low-molecular-weight, alkaline-active, thermostable protease by a novel, spiral-shaped bacterium, Kurthia spiroforme, sp. nov. Enzyme Microb. Technol. 14: 358–360.


Takazane S., T. Endo, O. Shida, H. Tagami, H. Takagi and K. Kadowaki. 1998. Influence of Bacillus species in Shoyu Koji on Shoyu brewing (part 1) isolation and identification of antifungal antibiotics producing bacteria. Shoyu Kenkyujyo Kenkyu Houkoku 24: 77–82.


Tanaka Y., J. Watanabe and Y. Mogi. 2012. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol. 31: 100–106.


Tanasupawat S., J. Thongsanit, S. Okada and K. Komagata. 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. J. Gen. Appl. Microbiol. 48: 201–209.


Torsvik V. and L. Øvreås. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240–245.


Wah T.T., S. Walaisri, A. Assavanig, N. Niamsiri and S. Lertsiri. 2013. Co-culturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int. J. Food Microbiol. 160: 282–289.


Wei Q.Z., H.B. Wang, Z.X. Chen, Z.J. Lv, Y.F. Xie and F.P. Lu. 2013. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process. Appl. Microbiol. Biot. 97: 9111–9119.


Whiteley A.S., S. Jenkins, I. Waite, N. Kresoje, H. Payne, B. Mullan, R. Allcock and A. O’Donnell. 2012. Microbial 16S rRNA Ion Tag and community metagenome sequencing using the Ion Torrent (PGM) Platform. J. Microbiol. Methods 91: 80–88.