Enzymes Involved in Naproxen Degradation by Planococcus sp. S5


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 2 (June 2016) > List of articles

Enzymes Involved in Naproxen Degradation by Planococcus sp. S5

Danuta Wojcieszyńska / Dorota Domaradzka / Katarzyna Hupert-Kocurek / Urszula Guzik *

Keywords : Planococcus, biodegradation, naproxen, enzymes induction, aromatic plant compounds

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 2, Pages 177-182, DOI: https://doi.org/10.5604/17331331.1204477

License : (CC BY-NC-ND 4.0)

Received Date : 30-October-2015 / Accepted: 10-January-2016 / Published Online: 07-June-2016



Naproxen is a one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) entering the environment as a result of high consumption. For this reason, there is an emerging need to recognize mechanisms of its degradation and enzymes engaged in this process. Planococcus sp. S5 is a gram positive strain able to degrade naproxen in monosubstrate culture (27%). However, naproxen is not a suf­ficient growth substrate for this strain. In the presence of benzoate, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid or vanillic acid as growth substrates, the degradation of 21.5%, 71.71%, 14.75% and 8.16% of naproxen was observed respectively. It was shown that the activity of monooxygenase, hydroxyquinol 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxyegnase in strain S5 was induced after growth of the strain with naproxen and 4-hydroxybenzoate. Moreover, in the presence of naproxen activity of gentisate 1,2-dioxygenase, enzyme engaged in 4-hydroxybenzoate metabolism, was completely inhibited. The obtained results suggest that monooxygenase and hydroxyquinol 1,2-dioxygenase are the main enzymes in naproxen degradation by Planococcus sp. S5.

Content not available PDF Share



Annweiler E., H.H. Richnow, G. Antranikian, S. Hebenbrock, C. Garms, S. Franke, W. Francke and W. Michaelis. 2000. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. App. Environ. Microbiol. 66: 518–523.


Cidaria D., F. Deidda and A. Bosetti. 1994. A rapid method for naphthalene dioxygenase assay in whole cells of naphthalene cis-dihydrodiol dehydrogenase blocked Pseudomonas fluorescens: Screening of potential inducer of dioxygenase activity. Appl. Microbiol. Biotechnol. 41: 689–693.


Deveryshetty J., V. Suvekbala, G. Varadamshetty and P.S. Phale.2007. Metabolism of 2-, 3- and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD. FEMS Microbiol. Lett. 268: 59–66.


Divari S., F. Valetti, P. Caposito, E. Pessione, M. Cavaletto,E. Griva, G. Gribaudo, G. Gilardi and C. Giunta. 2003. The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13. J. Biochem. 270: 2244–2253.


Eppink M.H., S.A. Boeren, J. Vervoort and W.J. van Berkel. 1997. Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J. Bacteriol. 179: 6680–6687.


Fairley D.J., D.R. Boyd, N.D. Sharma, C.C.R. Allen, P. Morgan and M.J. Larkin. 2002. Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl. Environ. Microbiol. 68: 6246–6255.


Feng Y., H.E. Khoo and Ch.L. Poh. 1999. Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869. Appl. Microbiol. Biotechnol. 65:946–950.


Ghareib H.R.A., M.S. Abdelhamed and A.H. Ibrahim. 2010. Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed. Biol. Manag. 10: 64–72.


Greń I., D. Wojcieszyńska, U. Guzik, M. Perkosz and K. Hupert-Kocurek. 2010. Enhanced biotransformation of mononitrophenols by Stenotrophomonas malthophilia KB2 in the presence of aromatic compounds of plant origin. World J. Microbiol. Biotechnol. 26: 289–295.


Grenni P., L. Patrolecco, N. Ademollo, A. Tolomei and A.B. Caracciolo. 2013. Degradation of gemfibrozil and naproxen in a river water ecosystem. Microchem. J. 107: 158–164.


Grenni P., L. Patrolecco, N. Ademollo, M. Di Lenola and A.B. Caracciolo. 2014. Capability of the natural microbial community in a river water ecosystem to degrade the drug naproxen. Environ. Sci. Pollut. Res. 21: 13470–13479.


Hou Ch.T., M.O. Lillard and R.D. Schwartz. 1976. Protocatechuate 3,4-dioxygenase from Acinetobacter calcoaceticus. Biochemistry 15: 582–588.


Hupert-Kocurek K., U. Guzik and D. Wojcieszyńska. 2012. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Acta Biochim. Pol. 59: 345–351.


Kakkar S. and S. Bais. 2014. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 26(2014): 952943.


Kulkarni M. and A. Chaudhari. 2006. Biodegradation of p-nitrophenol by P. putida. Biores. Technol. 97: 982–988.


Lahti M. and A. Oikari. 2011. Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaero-bic environments. Arch. Environ. Contam. Toxicol. 61: 202–210.


Luo S., J.J. Zhang and N.Y. Zhou. 2008. Molecular cloning and biochemical characterization of protocatechuate 3,4-dioxygenase in Burkholderia sp. NCIMB 10467. Microbiology 35: 712–719.


Łabużek S., K. Hupert-Kocurek and M. Skurnik. 2003. Isolation and characterization of new Planococcus sp. strain able for aromatic hydrocarbons degradation. Acta Microbiol. Pol. 52: 395–404.


Marco-Urrea E., M. Pérez-Trujillo, P. Blánquez, T. Vicent andG. Caminal. 2010. Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Biores. Technol. 101: 2159–2166.


Park S.H., J.W. Kim, S.H. Yuo, S.H. Leem, H.Y. Kahng andS.I. Kim. 2006. Characterization of β -ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach. J. Microbiol. 44: 632–640.


Quintana J.B., S. Weiss and T. Reemtsma. 2005. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by membrane bioreactor. Water Res. 39: 2654–2664.


Qurie M., M. Khamis, F. Malek, S. Nir, S.A. Bufo and J. Abbadi. 2014. Stability and removal of naproxen and its metabolite by advanced membrane wastewater treatment plant and micelle-clay complex. Clean Soil Air Water 42: 594–600.


Rodriguez-Rodriguez C.E., E. Marco-Urrea and G. Caminal. 2010. Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase system. Biores. Technol. 101: 1159–2266.


Sze I.S. and S. Dagley. 1984. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. J. Bacteriol. 159: 353–359.


Wang J., M. Ortiz-Maldonado, B. Entsch, V. Massey, D. Ballou and D.L. Gatti. 2002. Protein and ligand dynamics in 4-hydroxy-benzoate hydroxylase. PNAS 99: 608–613.


Wei M., J.J. Zhang, H. Liu and N.Y. Zhou. 2010. para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol in Pseudomonas sp. strain WBC-3. Biodegradation 21: 915–921.


Wojcieszyńska D., U. Guzik, I. Greń, M. Perkosz and K. Hupert-Kocurek. 2011. Induction of aromatic ring – cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J. Microbiol. Biotechnol. 27: 805–811.


Wojcieszyńska D., D. Domaradzka, K. Hupert-Kocurek andU. Guzik. 2014. Bacterial degradation of naproxen-undisclosed pollutant in the environment. J. Environ. Manage. 145: 157–161.


Yun S.H., Ch.Y. Yun and S.I. Kim. 2004. Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82. J. Microbiol. 42: 152–155.