Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 2 (June 2016) > List of articles

Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste

Arnoldo Wong-Villarreal / Lizbeth Reyes-López / Hipólito Corzo González / Cristina Blanco González / Gustavo Yáñez-Ocampo *

Keywords : agro-industrial wastes, biosurfactants, emulsification index, surface tension

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 2, Pages 183-189, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 12-June-2015 / Accepted: 17-September-2015 / Published Online: 07-June-2016



Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

Content not available PDF Share



Abbasi H., M. Hamedi, T.B. Lotfabad, H.S. Zahiri, H. Sharafi,F. Masoomi, A. Moosavi-Movahedi, A. Ortiz, M. Amanlou andK. Noghabi. 2012. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: Physicochemical and structural characteristics of isolated biosurfactant.J. Biosci. Bioeng. 113: 211–219.


Abbasi H., K.A. Noghabib, M.M. Hamedia, H.S. Zahiri, A.A. Moosavi-Movahedi, M. Amanlou, J.A. Teruel and A. Ortiz. 2013. Physicochemical characterization of a monorhamnolipid secreted by Pseudomonas aeruginosa MA01 in aqueous media. An experimental and molecular dynamics study. Coll. Surf. B: Biointerf. 101: 256–265.


Abou-Kheira A. and N. Atta. 2009. Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics. Biomass Bioenerg. 33: 1343–1350.


APHA. 2001. Revisions to Standard Methods for the Examination of Water and Wastewater, Washington, DC.


Al-Bahry S.N., Y.M. Al-Wahaibi, A.E. Elshafie, A.S. Al-Bemani, S.J. Joshi, H.S. Al-Makhmari and H.S. Al-Sulaimani. 2013. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegradation. 81: 141–146.


Banat I., R. Makkar and S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495–508.


Banat I., A. Franzetti, I. Gandolfi, G. Bestetti, M. Martinotti, J. Letizia, T. Smyth and R. Marchant. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427–444.


Cassidy D. and A. Hudak. 2001. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J. Hazard. Mater. B84: 253–264.


da Silva G.P., M. Mack and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30–39.


Desai J. and I. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47–64.


Déziel E., F. Lepine, D. Dennie, D. Boismenu, O. Mamer and R. Villemur. 1999. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta. 1440: 244–252.


Dubey K.V., P.N. Charde, S.U. Meshram, L.P. Shendre, V.S. Dubey and A.A. Juwarkar. 2012. Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions. Bioresour. Technol. 126: 368–374.


Estrada de los Santos P., R. Bustillos-Cristales and J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790–2798.


Ferhat S., S. Mnif, A. Badis, K. Eddouaouda, R. Alouaouic, A. Boucherit, N. Mhiri, N. Moulai-Mostefa and S. Sayadi. 2011. Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils. Int. Biodeterior. Biodegradation. 65: 1182–1188.


Fonseca P.F., T.F. Ferreira, G. Cardoso Fontes and M.A. Zarur Coelho. 2009. Glycerol valorization: New biotechnological routes. Food Bioprod. Process. 87: 179–186.


Fonseca A., D.S. Teodoro-Martinez, G. Nazareno, B. Gontijo,Í. Serrano, J.S. Garcia, M.R. Tótolac, M.N. Eberlin, M. Grossmand, O.L. Alves and others. 2011. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 46: 1951–1957.


Freitas D., Í. Lima, A. Nogueira, J. Lima, M. Aparecida, V. Melo and L. Barros. 2013. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf. B Biointerfaces. 101: 34–43.


Gudiña E., J. Pereira, R. Costa, J. Coutinho, J. Teixeira andL. Rodríguez. 2013. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-packed columns. J. Hazard. Mater. 261: 106–113.


Gudiña E.J., A.I. Rodrigues, E. Alves, M.R. Domingues, J.A. Teixeira and L.R. Rodrigues. 2015. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour. Technol. 177: 87–93.


Jain R.M., K. Modya, N. Joshi, A. Mishra and B. Jha. 2013a. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf. B Biointerfaces. 108: 199–204.


Jain R.M., M. Kalpana, J. Nidhi, M. Avinash and J. Bhavanath. 2013b. Effect of unconventional carbon sources on biosurfactant productionand its application in bioremediation. Int. J. Biol. Mac-romol. 62: 52–58.


Karanth N.G.K., P.G. Deo and N.K. Veenanadig. 1999. Microbial production of biosurfactants and their importance. Curr. Sci. 77: 116–125.


Kitamoto D., H. Isoda and T. Nakahara. 2002. Functions and potential applications of glycolipid biosurfactants from energy--saving materials to gene delivery carriers. J. Biosc. Bioeng. 94: 187–201.


Liu Y., M. Chong, J. Koh and L. Ji. 2011. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour. Technol. 102: 3927–3933.


Makkar R.S. and S.S. Cameotra. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58: 428–434.


Nalini S. and R. Parthasarathi. 2014. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 173: 231–238.


Pereira A.G., G.J. Pacheco, L.F. Tavares, B.C. Neves, F.A. Kronemberger, R.S. Reis and D.M.G. Freire. 2013. Optimization of biosurfactant production using waste from biodiesel industry in a new membrane assisted bioreactor. Process Biochem. 48: 1271–1278.


Pérez J., O. Anaya, C. Chang, I. Membrillo and G. Calva. 2010. Biosurfactants production by free-living bacteria nitrogen fixers growing on hydrocarbon (in Spanish). Rev. CENIC Cienc. Quím. 41: 1–9.


Prieto L.M, M. Michelon, J.F.M. Burkert, S.J. Kalil andC.A.V. Burkert. 2008. The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere. 71: 1781–1785.


Rocha e Silva N.M.P., R.D. Rufino, J.M. Luna, V.A. Santos and L.A. Sarubbo. 2014. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Bio-technol. 3: 132–139.


Ron E. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229–236.


Rosenberg E. and E. Ron. 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.


Rywinska A., P. Juszczyk, M. Wojtatowicz, M. Robak, Z. Lazar, L. Tomaszewska and W. Rymowicz. 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass bioenergy 48: 148–166.


SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. 2007. Servicio de Información Agroalimentaria y Pesquera (SIAP) (México). Disponible en: 2015.06.10.


Saitou N. and M. Nei. 1987. The Neiighbor-joining method: a new method for reconstructiong phylogenetic trees. Mol. Biol. Evol. 4: 406–425.


Sastoque-Cala L., A.M. Cotes-Prado and A.M. Pedroza-Rodríguez.2010. Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants. Universitas Scientiarum. 15: 251–264.


Siegmund I. and F. Wagner. 1991. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265–268.


Smyth T., A. Perfumo, R. Marchant and I. Banat. 2010. Isolation and analysis of low molecular weight microbial glycolipids, pp. 3705–3723. In: Timmis K.N. (ed.). Handbook of hydrocarbon and lipid microbiology. Springer, Berlin.


Soberón-Chávez G., F. Lépine and E. Déziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68: 718–725.


Valdez-Vazquez I., J.A. Acevedo-Benítez and C. Hernández-Santiago. 2010. Distribution and potential of bioenergy resources from agricultural activities in Mexico. Ren. Sust. Ener. Rev. 14: 2147–2153.


Vecino X., R. Devesa-Rey, J. Cruz and A. Moldes. 2013. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. J. Environ. Manage. 128: 655–660.


Weisburg W., G. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–670.


Yañez-Ocampo G. and A. Wong-Villareal. 2013. Microbial biosurfactants, potential production with agroindustrial wastes of Chiapas (in Spanish). Bio Tecnología 17: 12–28.


Youssef N., D. Simpson, K. Duncan, M. McInerney, M. Folmsbee, T. Fincher and R. Knapp. 2007. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol. 73: 1239–1247.