Cytotoxic and Bacteriostatic Activity of Nanostructured TiO2 Coatings


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 65 , ISSUE 2 (June 2016) > List of articles

Cytotoxic and Bacteriostatic Activity of Nanostructured TiO2 Coatings

Alessandro Di Cerbo * / Federica Pezzuto / Antonio Scarano

Keywords : bacteriostatic effect, cytotoxic activity, TiO2 coatings

Citation Information : Polish Journal of Microbiology. Volume 65, Issue 2, Pages 225-229, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 09-October-2015 / Accepted: 26-November-2015 / Published Online: 07-June-2016



Nanostructures are structures, mainly synthetic (nanosurfaces, cylindrical nanotubes, and nanospheres), which range between 1–100 nm in at least one dimension and can be engineered to a wide range of physical properties. This paper aims to explore the bacteriostatic and cytotoxic characteristics of nano-TiO2 coated specimens of glass, stainless steel and ceramic with different thickness and roughness. The results show that stainless steel and glass specimens with a nano-TiO2 coating thickness of 200 nm have a bacteriostatic effect of 97% and 100%, respectively after 30 minutes of UV exposure. Glass specimens with a nano-TiO2 coating thickness of 750, 200 and 50 nm have a bacteriostatic effect of 86%, 93% and 100% after 60 minutes. Nano-TiO2 coatings show a great bacteriostatic but not a cytotoxic effect, thus representing a valuable alternative for biomedical applications.

Content not available PDF Share



Behzadnia A., M. Montazer and A. Rashidi. 2014. Rapid sonosynthesis of N-doped nano TiO2 on wool fabric at low temperature: introducing self-cleaning, hydrophilicity, antibacterial/antifungal properties with low alkali solubility, yellowness and cytotoxicity. Photochem Photobiol. 90: 1224–1233.


Cai Y., M. Stromme and K. Welch. 2013. Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation. PLoS One 8: e75929.


European Patent Application (EPA). EP 1 624 087 A1.


Giolli C., F. Borgioli, A. Credi, A. Di Fabio, A. Fossati, M. Muniz Miranda, S. Parmeggiani, G. Rizzi, A. Scrivani, S. Troglio and others. 2007. Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surface & Coatings Technology 202: 13–22.


He R., L. Zhao, Y. Liu, N. Zhang, B. Cheng, Z. He, B. Cai, S. Li, W. Liu, S. Guo and others. 2013. Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomed. Microdevices 15: 617–626.


Kepenek, B., U.O.S. Seker and A.F. Cakir. 2004. Photocatalalytic bactericidal effect of TiO2 thin film produced by Cathodic Arc Deposition Method. Key Engineering Materials 254–256: 463–466.


Khataee R., V. Heydari and L. Moradkhannejhad. 2013. Self-cleaning and mechanical properties of modified white cement with nanostructured TiO2. J. Nanosci. Nanotechnol. 13: 5109–51014.


Kho Y.K., A. Iwase and W.Y. Teoh. 2010. Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J. Phys. Chem. C. 114: 2821–2829.


Kulkarni M., A. Mazare and E. Gongadze. 2015. Titanium nanostructures for biomedical applications. Nanotechnology 26: 062002.


Lee K., A. Mazare and P. Schmuki. 2014. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114: 9385–9454.


Li G., N.M. Dimitrijevic and L. Chen. 2008. The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J. Am. Chem. Soc. 130: 5402–5403.


Liao Y., W. Que and Q. Jia. 2012. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J. Mater. Chem. 22: 7937–7944.


Mikkelsen L., M. Sheykhzade and K.A. Jensen. 2011. Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Part Fibre Toxicol. 8: 32.


Petrini P., C.R. Arciola and I. Pezzali. 2006. Antibacterial activity of zinc modified titanium oxide surface. Int. J. Artif. Organs 29: 434–442.


Pleskova S.N., I.S. Golubeva and I. Verevkin. 2011. Photoinduced bactericidal activity of TiO2 films. Prikl. Biokhim. Mikrobiol. 47: 28–32.


Roy P., S. Berger and P. Schmuki. 2011. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. Engl. 50: 2904–2939.


Seo J.W., H. Chung and M.Y. Kim. 2007. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small 3: 850–853.


Tao T., Y. Chen and D. Zhou. 2013. Expanding the applications of the ilmenite mineral to the preparation of nanostructures: TiO2 nanorods and their photocatalytic properties in the degradation of oxalic acid. Chemistry 19: 1091–1096.


Wang Y., Y. He. and Q. Lai. 2014. Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci. (China) 26: 2139–2177.


Xi B., L.K. Verma and J. Li. 2012. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Appl. Mater. Interfaces. 4: 1093–10102.


Yu B., W. M. Lau and J. Yang. 2013. Preparation and characterization of N-TiO2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria. Nanotechnology 24: 335705.


Zuo X., J. Hu. and M. Chen. 2015. The role and fate of inorganic nitrogen species during UVA/TiO disinfection. Water Res. 80: 12–19.