Search

  • Select Article Type
  • Abstract Supplements
  • Blood Group Review
  • Call to Arms
  • Communications
  • Hypothesis
  • In Memoriam
  • Interview
  • Introduction
  • Letter to the Editor
  • Short Report
  • abstract
  • Abstracts
  • Article
  • book-review
  • case-report
  • case-study
  • Clinical Practice
  • Commentary
  • Conference Presentation
  • conference-report
  • congress-report
  • Correction
  • critical-appraisal
  • Editorial
  • Editorial Comment
  • Erratum
  • Events
  • in-memomoriam
  • Letter
  • Letter to Editor
  • mini-review
  • minireview
  • News
  • non-scientific
  • Obituary
  • original-paper
  • original-report
  • Original Research
  • Pictorial Review
  • Position Paper
  • Practice Report
  • Preface
  • Preliminary report
  • Product Review
  • rapid-communication
  • Report
  • research-article
  • Research Communicate
  • research-paper
  • Research Report
  • Review
  • review -article
  • review-article
  • review-paper
  • Review Paper
  • Sampling Methods
  • Scientific Commentary
  • serologic-method-review
  • short-communication
  • short-report
  • Student Essay
  • Varia
  • Welome
  • Select Journal
  • In Jour Smart Sensing And Intelligent Systems

 

Research Article | 27-December-2017

PARETO OPTIMAL ROBUST FEEDBACK LINEARIZATION CONTROL OF A NONLINEAR SYSTEM WITH PARAMETRIC UNCERTAINTIES

The problem of multi-objective robust feedback linearization controller design of nonlinear system with parametric uncertainties is solved in this paper. The main objective of this paper is to propose an optimal technique to design a robust feedback linearization controller with multi-objective genetic algorithm. A nonlinear system is considered as a benchmark and feedback linearization controller is designed for deterministic and probabilistic model of the benchmark. Three and four conflicting

A. Hajiloo, M. samadi, N. Nariman-Zadeh

International Journal on Smart Sensing and Intelligent Systems, Volume 7 , ISSUE 1, 214–237

research-article | 01-July-2020

Sliding mode control design for the attitude and altitude of the quadrotor UAV

linear model (Ataka et al., 2013; Al-Younes et al. 2010). The dynamics of quadrotor is divided into three subsystems: attitude, altitude, and positions to design the backstepping and augmented backstepping controller (Madani and Benallegue, 2006; Behnamgol et al., 2016; Zhang et al., 2017). The direct feedback linearization and adaptive feedback linearization for quadrotor are designed (Lee et al., 2009; Mukherjee and Waslander, 2012). The attitude controller is designed based on quantitative

Ahmed Eltayeb, Mohd Fua’ad Rahmat, Mohd Ariffanan Mohd Basri

International Journal on Smart Sensing and Intelligent Systems, Volume 13 , ISSUE 1, 1–13

No Record Found..
Page Actions