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Comparison of selected tests for univariate normality
based on measures of moments

Czesław Domański1, Piotr Szczepocki2

ABSTRACT

Univariate normality tests are typically classified into tests based on empirical distribution,
moments, regression and correlation, and other. In this paper, power comparisons of nine
normality tests based on measures of moments via the Monte Carlo simulations is exten-
sively examined. The effects on power of the sample size, significance level, and on a
number of alternative distributions are investigated. None of the considered tests proved
uniformly most powerful for all types of alternative distributions. However, the most pow-
erful tests for different shape departures from normality (symmetric short-tailed, symmetric
long-tailed or asymmetric) are indicated.
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1. Introduction

The normality of the data assumption is one of the most commonly found in statistical stud-
ies, especially in econometric models and generally in research on applied economics. It is
well known that departures from normality may lead to substantial inaccuracy of estimation
procedures and incorrect inference. Popular graphical methods (Q–Q plot, histogram or box
plot) are unable to provide formal conclusive evidence that the normal assumption holds.
Therefore, formal statistical tests are required to conclude the normality of the data.

The problem of testing normality has gained considerable importance and has led to the
development of a large number of goodness-of-fit tests to detect departures from normality.
Comprehensive descriptions and power comparisons of such tests have been the focus of
attention of many previous works (for the newest research see: Thadewald and Büning,
2007, Romão, Delgado and Costa, 2010, Yap and Sim, 2011, Wijekularathna, Manage and
Scariano, 2019). Although the referred comparison studies have been appearing over the
years, there are fewer works that compare only normality tests based on the measures of
the moments. The more recent ones, Domański (2010) and Domański and Jędrzejczak
(2016), do not include several interesting and more recently developed tests. This class
of tests is very broad, and among other encompasses one of the most popular econometric
normality test (the Jarque–Bera test) and a number of new tests based on robust estimates
of the moments. Furthermore, these tests offer also clear interpretation of results, which
may be very useful for users: when normality is rejected, one also obtains information on
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the sample: the distribution may be skewed to the left/right and/or long (or short) tailed. A
further comparison of such normality tests can, therefore, be considered to be of foremost
interest.

In Section 2, we present the procedures for normality tests considered in this study. The
Monte Carlo simulation methodology for comparisons of the power of the normality tests
and results are discussed in Section 3. Finally, a conclusion is given in Section 4.

2. Tests for Normality

In this article, we assume that we have a random sample X1,X2, ...,Xn of independently
and identically distributed random variables from a continuous univariate distribution with
an unknown probability density function f (x,θ), where θ = (θ1,θ2, ...,θk) is a vector of
real-valued parameters. We test normality of this sample by verifying a composite null
hypothesis:

H0 : f (x;θ) ∈ N (x; µ,σ)

against the alternative:
H1 : f (x;θ) /∈ N (x; µ,σ)

where N (x; µ,σ) is a class of normal distributions with mean µ standard deviation σ , and
probability density function given by

g(x; µ,σ) =
1

σ
√

2π
exp
[
− (x−µ)2

2σ2

]
.

Let a random variable X be distributed with mean µ and standard deviation σ . Then,
the third (skewness) and fourth (kurtosis) standardized moment central moments (provided
they exist) are respectively given by:

√
β1 =

E (X−µ)3[
E (X−µ)2

]3/2 =
E (X−µ)3

σ3 (1)

and

β2 =
E (X−µ)4[
E (X−µ)2

]2 =
E (X−µ)3

σ4 . (2)

These measures of probabilistic distribution are sometimes referred to as Pearson’s moment
coefficient of skewness and kurtosis.

Skewness is a measure of symmetry about the mean of a probability density. Kurtosis
is a measure of the peakness of a probability density. For the normal distribution

√
β1 = 0

and β2 = 3. However, there are also non-normal distributions that are symmetric (e.g. t-
Student) or have kurtosis equal to three (e.g. the Tukey distribution with parameter λ =

0.135). Furthermore, testing only skewness, when kurtosis is uncontrolled, may lead to
incorrect conclusions. This is often the case of testing skewness in financial returns, for
which kurtosis is significantly higher than in the case of normal distribution (Piontek, 2007).
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Therefore, usually for the normality testing both skewness and kurtosis are involved. Such
normality tests are often referred to as ‘omnibus’, because they are able to detect deviations
from normality due to either skewness or kurtosis. In this study we only compare omnibus
tests due to their convenience for practitioners: clear interpretation of results.

Empirical counterparts of the skewness and kurtosis are respectively given by

√
b1 =

1
n

n

∑
i=1

(
Xi− X̄

S

)3

, (3)

and

b2 =
1
n

n

∑
i=1

(
Xi− X̄

S

)4

, (4)

where X̄ = 1/n∑
n
i=1 Xi is mean and S =

√
1/n∑

n
i=1 (Xi− X̄)

2 is standard devation. A num-
ber of transformations and alternative measures of skewness and kurtosis are the basis for
the considered univariate normality tests presented below.

2.1. The D’Agostino–Pearson K2 test

D’Agostino and Pearson (1973) proposed the test statistic K2 that combines normalizing
transformations of sample skewness and kurtosis.

The transformation of sample skewness
√

b1 is based on Johnson’s SU transformation
(Johanson, 1949) and is given by

Z(
√

b1) =
ln
(

Y/c+
√
(Y/c+)2 +1

)
√

ln(w)
, (5)

where

Y =
√

b1

√
(n+1)(n+3)

6(n−2)
, w2 =−1+

√
2γ2−1,

γ2 =
3(n2 +27n−70)(n+1)(n+3)
(n−2)(n+5)(n+7)(n+9)

, c =

√
2

(w2−1)
.

D’Agostino and Pearson (1973) gave only percentage points of the distribution of trans-
formation of b2 under normal distribution. Anscombe and Glynn (1983) proposed similar
transformation for sample kurtosis b2 by fitting a linear function of the reciprocal of a chi-
squared variable and then using the Wilson-Hilferty transformation (Wilson and Hilferty,
1931). The transformed sample kurtosis from Anscombe and Glynn (1983) is given by

Z(
√

b2) =

[(
1− 2

9A

)
−
√

1−2/A

1+ y
√

2/(A−4)

]√
9A
2
, (6)
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where

y =
b2−3(n−1)/(n+1)

24n(n−2)(n−3)/ [(n+1)2(n+3)(n+5)]
,

A = 6+
8
√

γ1

(
2
√

γ1
+

√
1+

4
γ1

)
,

√
γ1 =

6(n2−5n+2)
(n+7)(n+9)

√
6(n+3)(n+5)
n(n−2)(n−3)

.

The test statistic K2 =
[
Z(
√

b1)
]2
+[Z(b2)]

2 that combines D’Agostino and Pearson’s trans-
formation of sample skewness (5) and Anscombe and Glynn’s transformation of sample
kurtosis (6) follows approximately chi-squared distributed with two degrees of freedom as
the sum of squares of two asymptotically independent standardized normals (D’Agostino,
Belanger and D’Agostino, 1990).

2.2. The Jarque–Bera test

The Jarque–Bera test is one of the most popular goodness-of-fit test in the field of econo-
metrics. Although it was first proposed by Bowman and Shenton (1975), it is mostly known
from the work of Jarque and Bera (1987). The test Statistic JB is based on sample skewness
and kurtosis and is defined as

JB = n

(
(b1/2

1 )2

6
+

(b2−3)2

24

)
. (7)

This test statistic is derived from the fact that, under normality, the asymptotic means of
b1/2

1 and b2 are 0 and 3, and the asymptotic variances are 6/n and 24/n, and finally the
asymptotic covariance is zero. Thus, JB statistic is the sum of squares of two asymptotically
independent standardized normals and has approximately chi-squared distribution with two
degrees of freedom. However, the statistics b1/2

1 and b2 are not independently distributed
and the sample kurtosis approaches normality very slowly. Thus, asymptotic critical values
are strongly not recommended.

Jarque and Bera (1987) also proved that if the alternative distributions are in the Pearson
family, JB statistic is the corresponding Lagrange multiplier test (also known as Rao’s score
test) for normality.

2.3. The Urzùa test

Urzùa (1996) proposed a modification of the Jarque–Bera test called the adjusted Lagrange
multiplier test by standardizing the sample skewness and kurtosis in the formula of JB
statistics in the following way

ALM = n

(
(b1/2

1 )2

c1
+

(b2− c2)
2

c3

)
, (8)
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where

c1 =
6(n−2)

(n+1)(n+3)
, c2 =

3(n−1)
(n+1)

, c3 =
24n(n−2)(n−3)

(n+1)2(n+3)(n+5)
.

The idea of this modification is to use, instead of the asymptotic means and variances of
the standardized third and fourth moments, their exact counterparts. On the basis of Fisher
(1930) k−statistics, Urzùa showed that under normality, the exact mean and variance of b1/2

1
are 0 and c1, and the exact mean and variance of b2 are c2 and c3.

On the basis of asymptotical distributions of ALM statistic, the hypothesis of normality
is rejected at some significance level if the value of statistic exceeds critical value of a chi-
squared distribution with two degrees of freedom. This modification of JB statistic behaves
much better for small- and medium-size samples, than the original statistic when one uses
asymptotical tables of critical values (Urzùa, 1996). However, in the case of Monte Carlo
simulated critical values, Thadewald and Büning (2007) reported no improvement of power
to the classical JB test.

2.4. The Doornik–Hansen test

Doornik and Hansen (2008) introduced another modification of the Jarque–Bera test for
which the transformation creates statistics that are much closer to standard normal than in
original JB statistic. Statistic of Doornik-Hansen test is given by

DH =
[
Z(
√

b1)
]2

+[z2]
2 , (9)

in which they proposed to use the transformed sample skewness Z(
√

b1) according to equa-
tion (5) and sample kurtosis is transformed to a chi-squared distribution with non-integer
degrees of freedom, which is then translated into standard normal using the Wilson–Hilferty
transformation

z2 =

[(
ξ

2a

) 1
3
−1+

1
9a

]
√

9a, (10)

where

ξ = (b2−1−b1)2k, k =
(n+5)(n+7)(n3 +37n2 +11n−313)

12(n−3)(n+1)(n2 +15n−4)
,

a =
(n+5)(n+7)

[
(n2 +27n−70)+b1(n−7)(n2 +2n−5)

]
6(n−3)(n+1)(n2 +15n−4)

.

The formulae (10) break down for n6 7. The DH statistic is also approximately chi-squared
distribution with two degrees of freedom. However, because of its fast coverage, DH statis-
tic does not require simulated quantiles of distribution under null hypothesis (Doornik and
Hansen, 2008).
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2.5. The Gel–Gastwirth test

Gel and Gastwirth (2008) proposed a modification of JB that uses a robust estimate of the
dispersion, the average absolute deviation from the sample median (MAAD), instead of the
second order central moment m2. MAAD is defined by

MAAD =

√
π/2
n

n

∑
i=1
|Xi−medF | , (11)

where medF is the sample median. Robust dispersion measure is used, due to the fact that
sample moments are known to be sensitive to outliers, and the sample variance is even more
affected by outliers than the mean (Gel and Gastwirth, 2008). Thus, RJB statistic performs
better than JB statistics in the case of long-tailed distributions (Gel and Gastwirth, 2008).
However, in the case of short-tailed distribution robust measures of the dispersion may not
be necessary.

The test statistic is given by

RJB =
n
6

(
m3

MAAD3

)2

+
n
64

(
m4

MAAD4 −3
)2

. (12)

Gel and Gastwirth (2008) also proved that under the null hypothesis of normality, the RJB
test statistic asymptotically follows the chi-square distribution with two degrees of free-
dom. However, similarly to JB, for small and moderate samples the Monte Carlo simulated
critical values are more preferable than asymptotic chi-squared distribution values.

2.6. The Bontemps-Meddahi tests

Bontemps and Meddahi (2005) proposed a family of normality tests developed on the basis
of generalized method of moments approach and Hermite polynomials. The family of test
statistics is given by

BM3−ρ =
ρ

∑
k=3

(
1√
n

n

∑
i=1

Hk

(
xi− x̄

s

))2

, (13)

where Hk is the k−th order normalized Hermite polynomial. The considered moment con-
ditions in the Bontemps-Meddahi tests are based on the Stein equation (Stein, 1972). The
important property of the Stein equation is that, the expectation of the considered function
is zero by construction. Bontemps and Meddahi (2005) showed that special examples of
this equation correspond to the zero mean of any Hermite polynomial. The family of the
Bontemps-Meddahi tests asymptotically follows the chi-square distribution with ρ − 2 de-
grees of freedom. The JB statistic almost coincides with BM3−4. The only difference is that
in JB test, the variance is estimated by S = 1/n∑

n
i=1(Xi− X̄)2 while in the Hermite case it is

estimated by 1/(n−1)∑
n
i=1(Xi− X̄)2. In the presented study we use the Bontemps-Meddahi

test termed BM3−6, because tests based on Hermite polynomials of degree at least seven do
not provide gain in power (Bontemps and Meddahi, 2005).
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2.7. The Hosking test

Hosking (1990) proposed to use L-moments, linear combinations of the order statistics,
instead of classic central moments in order to obtain more powerful test in case of long-
tailed distributions. L-moments are less affected by sample variability, and thus more robust
to outliers.

Based on the second, third and fourth sample L-moments, which correspond to the
second, third and fourth central moments, Hosking (1990) introduced new measures of
skewness and kurtosis, termed L-skewness τ3 and L-kurtosis τ4 defined as

τ3 =
l3
l2
, τ4 =

l4
l2

(14)

where lr are order sample L-moment that can be estimated by

lr =
r−1

∑
k=0

p∗r−1,kbk, (15)

where

p∗r−1,k = (−1)r−k
(

r
k

)(
r+ k

k

)
, bk =

1
n

n

∑
i=1

(i−1)(i−2) · · ·(i− k)
(n−1)(n−2) · · ·(n− k)

.

Hosking (1990) proposed to test normality by the following statistic

TLmom =
τ3−µτ3

var(τ3)
+

τ4−µτ4

var(τ4)
, (16)

where values of means (µτ3 , µτ4 ) and variances (var(τ3), var(τ4)) of L-skewness τ3 and
L-kurtosis τ4 may be obtained by simulation. The TLmom is approximately chi-squared dis-
tribution with two degrees of freedom.

2.8. The Brys-Hubert-Struyf & Bonett-Seier test

The Brys-Hubert-Struyf & Bonett-Seier test TMC−LR − Tw is omnibus test for normality
proposed in (Romão, Delgado and Costa, 2010) as combination of two tests: the Bonett-
Seier test (Bonett and Seier, 2002) and the Brys–Hubert–Struyf MC˘LR test (Brys, Hubert
and Struyf, 2007). The former is a kurtosis associated test, the latter is a skewness-based
test. The statistic of the Bonett-Seier test is defined as

Tw =
(ω̂−3)

√
n+2

3.54
, (17)

where

ω̂ = 13.29

[
ln
√

m2− ln

(
1
n

n

∑
i=1
|Xi− X̄ |

)]
,
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in which m2 is a sample second central moment. Statistics Tw approximately follows a stan-
dard normal distribution, and consequently null hypothesis is rejected for both small and
large values of Tw. The Bonett-Seier statistic is a simple transformation of Geary’s measure
of kurtosis (Geary, 1936) , which is defined as τ/σ , where τ = E(|X − µ|). After trans-
formation (17), like its Pearson’s counterpart (given by equation (4)), Geary’s measure of
kurtosis equals 3 under normality and increases without bound with increasing leptokurto-
sis.

The Brys–Hubert–Struyf MC–LR TMC−LR test is given by

TMC−LR = n(v−v)′V−1(v−v), (18)

where v is the vector of robust measures of skewness [MC,LMC,RMC]′, and ν , V are esti-
mates based on the distribution under null hypothesis. In the case of normal distribution ν ,
V are given by

ν = [0,0.199,0.199]′ , V =

 1.25 0.323 −0.323
0.323 2.62 −0.0123
−0.323 −0.0123 2.62

 .
TMC−LR statistic approximately follows the chi-square distribution with three degrees of
freedom.

The first element of vector of v is medcouple, proposed in Brys et al. (2004), defined as

MC = med
X(i)≤medF≤X( j)

h
(
X(i),X( j)

)
, (19)

where med is the median, h is the kernel function given by

h
(
X(i),X( j)

)
=

(
X( j)−medF

)
−
(
medF−X(i)

)
X(i)−X( j).

Medcouple is a robust skewness measure bounded by [−1,1].
The two other elements of vector v are the left medcouple (LMC) and the right medcou-

ple (RMC), the left and right tail weight measure, proposed in Brys et al. (2006). LMC and
RMC are respectively defined as

LMC =−MC(x < medF), RMC = MC(x > medF). (20)

Like medcouple, they are robust against outlying values. These three measures have great
advantage that can be computed at any distribution, even when finite moments do not exist
(Brys, Hubert and Struyf, 2007).

The joint test TMC−LR−Tw proposed by Romão, Delgado and Costa (2010) is based on
the assumption that individual tests can be considered independent. This assumption was
positively verified in simulation study of 200,000 samples of size 100 drawn from a standard
normal distribution. In order to control the overall type I error at the nominal level α , the
normality hypothesis of the data is rejected for the joint test when rejection is obtained for
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either one of the two individual tests for a significance level of α/2 (Romão, Delgado and
Costa, 2010).

2.9. Desgagnéa and Lafaye de Micheaux test

Desgagnéa and Lafaye de Micheaux (2018) has recently proposed new alternatives to the
classical Pearson’s measures of skewness and kurtosis, which they termed 2nd-power skew-
ness and kurtosis. They used them to build two tests of normality. First test Xa

APD can be
derived as the Lagrange multiplier test on the asymmetric power distribution (APD) class,
introduced by Komunjer (2007). This class of distribution is a generalization of the gener-
alized power distribution (GPD) (also known as the generalized error distribution (GED)),
which is symmetric, to a broader class that includes asymmetric distributions. The APD
class encompasses all GPD distributions (i.e. the Laplace distribution, normal distribution)
and asymmetric distributions (i.e. asymmetric Laplace distribution, split normal distribu-
tion).

The basis of this test are 2nd-power skewness B2 and 2nd-power kurtosis K2, which are
defined as

B2 =
1
n

n

∑
i=1

Z2
i sign(Zi), and K2 =

1
n

n

∑
i=1

Z2
i ln(|Zi|), (21)

where Zi = (Xi− X̄)/S. This sample statistics are analogous to 2nd-power skewness and
kurtosis for a random variable X, which are defined as E(Z2sign(Z)) and E(Z2 ln(Z)), re-
spectively.

The Xa
APD statistics is defined as

Xa
APD =

nB2
2

3−8/π
+

n(K2− (2− ln2− γ)/2)2

(3π2−28)/8
, (22)

where γ is the Euler–Mascheroni constant. The Xa
APD is approximately chi-squared distribu-

tion with two degrees of freedom as a sum of squares of two independent standard normals.
However, Xa

APD has rather poor small sample properties (just as JB statistic). Thus, Desgag-
néa and Lafaye de Micheaux (2018) proposed the second statistic XAPD defined as

XAPD = Z2(B2)+Z2(K2−B2), (23)

where

Z(B2) =

√
nB2

2
(3−8/π)(1−1.9/n)

is transformed 2nd-power skewness, and

Z(K2−B2) =

√
n
[
(K2−B2

2)
1/3− ((2− ln2− γ)/2)1/3(1−1.026/n)

]√
((2− ln2− γ)/2)−4/3(3π2−28)(1−2.25/n0.8)/72

is transformed 2nd-power net kurtosis. Under the null hypothesis XAPD is, with high nu-
merical precision, approximately distributed as chi-squared distribution with two degrees of
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freedom, for all sample sizes with at least 10 observations. This is a rare and desirable char-
acteristic for normality test statistic based on measures of the moments. In the simulation
study we use only XAPD statistics.

3. Simulation study

In our simulation study we considered three levels of significance: α = 0.01, 0.05 and 0.10,
and five different sample sizes: n = 10, 20, 50, 100, 500. First, appropriate critical values
were obtained for each test based on 100,000 simulated samples from a standard normal
distribution. We decided to use empirical rather than approximated limit distributions, be-
cause many preavious studies emphasized that in the case of Jarque-Berra test and their
modifications chi-squared distribution approximation of the limit distribution did not work
well, even for large sample sizes (Thadewald and Büning, 2007 and Romão, Delgado and
Costa, 2010).

In order to investigate the power of the various tests a total of 10,000 samples of the
appropriate size were drawn from each of 15 different non-normal distributions. These dis-
tributions are categorized as symmetric short-tailed, symmetric long-tailed and asymmetric
in shape (the same categories were considered by Farrell and Rogers-Stewart, 2006). The
choice of shape category is based on the values of Pearson’s measures of the skewness
and kurtosis of the distribution given by the formulas (1) and (2). Specifically, asymmetric
distributions have

√
β1 6= 0, symmetric short-tailed

√
β1 = 0 and β2 < 3 and symmetric

long-tailed
√

β1 = 0 and β2 > 3.
Tables 1, 2, 3 presents results for the first category of alternative distributions, namely

symmetrical short-tailed distributions, respectively for three levels of significance: α = 0.01,
0.05 and 0.10. Distributions are ordered from the distribution with the lowest kurtosis (the
most distinct from normal), to the distribution with the highest kurtosis (the closest to nor-
mal). The average power across all short-tailed distributions is presented in Table 4. Firstly,
power of normality test for this group of distributions is not sufficient. Especially, at sig-
nificance level α = 0.01 and small samples sizes (below 50), all considered tests perform
very poorly. When the significance level and/or sample size increase tests become more
powerful. For the smallest sample sizes XAPD statistics seems to perform best for most
alternative distributions. For moderate and big samples K2 achieves good power for alterna-
tive distributions with low kurtosis, but for distributions with kurtosis more close to normal
TMC−LR−Tw statistics performs even better. On the basis of average results, TLmom tests per-
form fairly well for moderate and big samples, too. The results show that for symmetrical
short-tailed distributions the popular JB statistic performs poorly. From modifications of
this statistics DH seems to be the best. It performs quite well for all sample sizes.
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Results for the second category of alternative distributions, symmetrical long-tailed dis-
tributions, are presented in Tables 5, 6, 7. Distributions are ordered from the distributions
with the highest kurtosis (the most distinct from normal), to the distribution with the lowest
kurtosis (the closest to normal). The average power across all long-tailed distributions is pre-
sented in Table 8. For this group of distribution, normality tests perform better than for the
short-tailed distributions, but for small sample size results are still not very impressive. On
the basis of average results, the RJB statistic outperforms other tests for almost all sample
sizes. It is not surprisingly, bearing in mind that this test is based on the robust estimate of
the dispersion. However, when one takes a closer look at particular alternative distributions,
one may see that for the distribution with kurtosis closer to three also D’Agostino–Pearson
K2 test performs well. Contrary to the short-tailed distribution, JB statistic has quite good
power properties, even better than its modifications (apart from RJB).
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The results for the last category of alternative distributions, asymmetric distributions, are
presented in Tables 9, 10, 11. First three distributions are skewed to the right (ordered from
the highest skewness to the most close to zero), and the rest two distributions are left-skewed
(one with low skewness and one with close to zero). The average results power across all
asymmetric distributions is presented in Table 12. For asymmetric distributions normality
tests have much more power than in case of symmetric distributions. The results do not
show one particular test that outperforms the rest. The results vary widely depending on the
type of asymmetry, sample size and significance level. For lognormal distribution (strongly
right-skewed) BM3−6 and TLmom perform the best. From modifications of JB statistic, DH
also performs well. However, for big sample sizes (100 and 500) almost all statistics have
100% power. For distributions with weaker right asymmetry BM3−6 and DH are the most
powerful tests. As far as distributions skewed to the left are concerned, TLmom, XAPD and
BM3−6 perform the best. Contrary to the left asymmetry, DH test is not better than the
standard JB test.
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4. Conclusions

In this study, we performed a comprehensive investigation of nine tests for normality based
on measures of the moments. In a simulation study we focused on a different forms of
shape departure from normality such as symmetric short-tailed, symmetric long-tailed, or
asymmetric. None of the tests considered in this study is uniformly most powerful for all
types of alternative distributions, sample sizes and significance levels considered. If the
distribution is symmetric and short-tailed two test are the most powerful, Desgagnéa and
Lafaye de Micheaux’s XAPD test and D’Agostino and Pearson’s K2 . Gel and Gastwirth’s
RJB test is one of the most powerful tests for normality based on measures of the moments
across a wide array of symmetrical and long-tailed alternative distributions. For the last
category of alternative distributions, asymmetric distributions, it is difficult to distinguish
one test. Bontemps-Meddahi’s BM3−6 for right-skewed distributions and Hosking’s TLmom

for left-skewed perform fairly well.
The JB test performs well for symmetric distributions with long tails and for slightly

skewed distributions with long tails. However, the power of the JB test is very poor for
distributions with short tails. As Thadewald and Büning (2007) reported the Urzùa test
has no improvement of power to the classical JB test in the case of Monte Carlo simulated
critical values. Gel and Gastwirth modification of JB that uses a robust estimate of the
dispersion seems to be the best modification in the case distributions with long tails and
Doornik–Hansen modification in the case of short-tailed distributions.

Finally, the authors would like to indicate two tests that have quite reasonable power for
all alternative distributions and have advantage of being very closely approximated by chi-
squared distribution with two degrees of freedom. These two test are the Doornik–Hansen
test and the Desgagnéa and Lafaye de Micheaux test. As a concluding remark, practitioners
should carefully act when graphical techniques such as histogram or moment statistics sug-
gest that the sample comes from symmetric distribution. In this case, normality tests do not
perform well for small sample sizes (below 50), especially when symmetry is accompanied
by short tail of distribution.
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finansowych. Prace Naukowe Akademii Ekonomicznej we Wrocławiu. Taksonomia,
14, pp. 122–130.(in Polish).

ROMÃO, X., DELGADO, R. and COSTA, A., (2010). An empirical power comparison of
univariate goodness-of-fit tests for normality. Journal of Statistical Computation and
Simulation, 80(5), pp. 545–591. doi:10.1080/00949650902740824.

THADEWALD, T., BÜNING, H., (2007). Jarque–Bera Test and its Competitors for Testing
Normality – A Power Comparison. Journal of Applied Statistics, 34(1), pp. 87–105.
doi:10.1080/02664760600994539.

https://doi.org/10.1080/10629360500109023
https://doi.org/10.2307/2333953.
https://doi.org/10.1016/j.econlet.2007.05.022
https://doi.org/10.2307/1403192
https://doi.org/10.1093/biomet/36.3-4.297
https://doi.org/10.1002/jae.961
https://doi.org/10.1080/00949650902740824
https://doi.org/10.1080/02664760600994539
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