APPLICATION OF ANT-COLONY ALGORITHM TO THE ISSUE OF IMPROVING RECTIFIED VOLTAGE PARAMETERS IN ELECTRIC TRAM TRACTION

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

6
Reader(s)
10
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 13 , ISSUE 2 (June 2018) > List of articles

APPLICATION OF ANT-COLONY ALGORITHM TO THE ISSUE OF IMPROVING RECTIFIED VOLTAGE PARAMETERS IN ELECTRIC TRAM TRACTION

Barbara Kulesz * / Andrzej Sikora / Adam Zielonka

Keywords : ant-colony optimization, traction voltage, tram traction, voltage transformation, tap changer, distorted voltage, voltage unbalance, multi-winding transformer

Citation Information : Transport Problems. Volume 13, Issue 2, Pages 133-144, DOI: https://doi.org/10.20858/tp.2018.13.2.13

License : (BY-NC-ND 4.0)

Received Date : 29-June-2016 / Accepted: 05-June-2018 / Published Online: 31-July-2018

ARTICLE

ABSTRACT

In this paper, the problem related to transformation of ac voltage into DC voltage used in tram supply is considered. A variable component is always present in rectified voltage. Pulsation of rectified voltage is influenced by different factors. In a 12-pulse system, where two secondary transformer windings are used (one delta-connected and the other star-connected), an additional factor increasing the pulsation is the unbalance of the output voltages at these windings. Tap changer may be used and its setting is optimized here by applying the ant-colony algorithm. Different supply voltage variants have been considered. It is demonstrated that pulsation may be reduced by even 25%.

 

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Dantzig, G.B. Origins of method, A history of scientific computing. ACM New York, NY. . 1990. P. 358.

Holland, J. Outline of control parameters for genetic algorithms. Journal of Association for Computing Machinery. 1962. Vol. 3. P. 297-314.

Edmonds, J. Matroids the greedy algorithm. Mathematical programming. 1971. Vol. 1(1). P. 127-136.

Glover, F. Future paths for integer programming and links to artificial intelligence. Computers & operations research. 1986. Vol. 13(5). P. 533-549.

Feo, T.A. & Resende, M.GC. Greedy randomized adaptive search procedures. Journal of global optimization. 1995. Vol. 6(2). P. 109-133.

Martin, O. & Otto, S.W. & Felten, E. W. Large-step Markov chains for the TSP incorporating local search heuristics. Operations Research Letters. 1992. Vol. 11(4). P. 219-224.

Baum, E.B. Towards practical ‘neural’ computation for combinatorial optimization problems. In: AIP Conference Proceedings. AIP. 1986. P. 53-58.

Koza, John R. Genetic programming: on the programming of computers by means of natural selection. MIT press. 1992.

Dorigo, M. Optimization, Learning and Natural Algorithms‖ (in Italian). thesis. Politecnico di Milano. Italy, 1992.

Eberhart, R. & Kennedy, J. A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS'95. Proceedings of the Sixth International Symposium on. IEEE, 1995. P. 39-43.

C. & Tsang, E. Guided local search and its application to the traveling salesman problem. European journal of operational research. 1999. Vol. 113(2). P. 469-499.

Karaboga, D. & Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization. 2007. Vol. 39(3). P. 459-471.

Kennedy, J. Particle swarm optimization. In: Encyclopedia of machine learning. Springer US 2011. P. 760-766.

Karaboga, D. & Gorkemli, B. & Ozturk, C. & Karaboga, N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review. 2014. Vol. 42(1). P. 21-57.

Karaboga, D. & Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization. 2007.Vol. 39(3). P. 459-471.

Storn, R. & Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization. 1997. Vol. 11(4). P. 341-359.

Müller, S.D. & Marchetto, J. & Airaghi, S. & Koumoutsakos, P. Optimization based on bacterial chemotaxis. IEEE on Evolutionary Computation. 2002. Vol. 6(1). P. 16-29.

Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems. 2002. Vol. 22(3). P. 52-67.

Krishnanand, K.N. & Ghose, D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Swarm intelligence symposium, 2005. SIS 2005. Proceedings 2005 IEEE. IEEE. 2005. P. 84-91.

Yang, X.-S. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). 2010. P. 65-74.

Fister, JR, Iztok, et al. A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186, 2013.

Hu, X. & Eberhart, R.C. & Shi, Y. Engineering optimization with particle swarm. In: Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE. IEEE. 2003. P. 53-57.

Birge, B. PSOt-a particle swarm optimization toolbox for use with Matlab. In: Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE. IEEE. 2003. P. 182-186.

Lee, T.-Y. Operating schedule of energy storage system in a time-of-use rate industrial user with wind turbine generators: a multipass iteration particle swarm optimization approach. IEEE ransactions on Energy Conversion. 2007. Vol. 22(3). P. 774-782.

Lee, C.-S. & Ayala, H.V.H. & Dos Santos Coelho, L. Capacitor placement of distribution systems using particle swarm optimization approaches. International Journal of Electrical Power & Energy Systems. 2015. Vol. 64. P. 839-851.

Rahman, I., et al. Review of recent trends in optimization techniques for hybrid, and electric vehicle charging infrastructures. Renewable and Sustainable Energy Reviews. 2016. Vol. 58. P. 1039-1047.

Kumar, D., et al. Reliability-constrained based optimal placement and sizing of multiple distributed generators in power distribution network using cat swarm optimization. Electric Power Components and Systems. 2014. Vol. 42(2). P. 149-164.

Mohammadi, H.R. & Akhavan, A. Parameter estimation of three-phase induction motor using of genetic algorithm and particle swarm optimization. Journal of Engineering. 2014.

Zhang, Y. & Wang, S. & Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering. 2015.

Yang, X.-S., et al. (ed.). Metaheuristics in water, geotechnical and transport engineering. Newnes. 2012.

Poli, R. Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications. 2008.

W, Q. & Cole, C. & Mcsweeney, T. Applications of particle swarm optimization in the railway domain. International Journal of Rail Transportation. 2016. Vol. 4(3). P. 167-190.

PN-EN 60076-1:2011 - . Transformatory. Wymagania ogólne. Warszawa: Polski Komitet Normalizacyjny. 75 p. [In Polish: Transformers. General requirements. Warsaw: Polish Committee of Standardization].

Jabłoński, M. . Łódź: Wyd. Politechniki Łódzkiej. 1994. [In Polish: Transformers. Łódź: Łódź University of Technology ed.].

Jezierski, E. & Gogolewski, Z. & Kopczyński, Z. & Szmit, J. Transformatory, budowa I projektowanie. Warszawa: WNT. 1963. [In Polish: Transformers, construction and design. Warsaw: WNT].

Mizia, W. Transformatory. Gliwice: Wydawnictwo Politechniki Śląskiej.1996. [In Polish: Transformers. Gliwice: Silesian University of Technology ed.].

Glinka, T. Maszyny elektryczne i transformatory. Podstawy teoretyczne, eksploatacja i diagnostyka. Sosnowiec: Wyd. INiME KOMEL. 2015. [In Polish: Electrical machines and transformers. Theoretical basics, operation and diagnostics. Sosnowiec: KOMEL Institute ed.].

Sikora, A. & Kulesz, B. & Grzenik, R. Dwunastopulsowe i dwudziestoczteropulsowe układy przetwarzania napięcia przemiennego na napięcie stałe. Prace Naukowe Politechniki Śląskiej. Elektryka. 2015. Vol. 3. P. 29-64. [In Polish: 12-pulse and 24-pulse ac/dc voltage transformation circuits. Scientific Journal of Silesian University of Technology, Elektryka].

Sikora, A. & Kulesz, B. Transformatory prostownikowe podstacji trakcyjnej-poszukiwanie najkorzystniejszego rozwiązania. Maszyny Elektryczne: zeszyty problemowe. 2009. Vol. 82. P. 181- 185. [In Polish: Rectifier transformers of traction substation – searching for most favourable design. Electrical Machines - Transaction Journal, KOMEL Institute ed.].

Sikora, A. & Kulesz, B. Zależność jakości energii sieci trakcyjnej od zastosowanych układów transformatorów prostownikowych. Zeszyty Problemowe–Maszyny Elektryczne BOBRME Komel. 2008. Vol. 80. [In Polish: Impact of rectifier transformer design on traction network energy. Electrical Machines - Transaction Journal. KOMEL Institute ed.].

Kulesz, B. & Sikora, A. Racjonalne przetwarzanie napięcia-czy budować układy 24-pulsowe? Maszyny Elektryczne: zeszyty problemowe. 2014. Vol. 2(102). P. 29-34. [In Polish: Rational energy transformation: 24-pulse circuit design? Electrical Machines – Transaction Journal, KOMEL Institute ed.].

Kulesz, B. & Pasko, M. & Sikora, A. Trakcyjne wieloimpulsowe układy przetwarzania napięcia z dławikami sprzężonymi przy zasilaniu napięciem odkształconym. Prace Naukowe Politechniki Śląskiej. Elektryka. 2011. Vol. 2. P. 33-46. [In Polish: Multi-pulse traction energy transforming circuits with coupled reactors and distorted voltage supply. Scientific Journal of Silesian University of Technology, Elektryka].

Hongping, Z. & Yan, L. & Junnian, W. A hybird active compensation device for current balance based on inductive filtering transformer. Transactions of China Electrotechnical Society. 2013. Vol. 28(8). P. 265-275.

Zhu, H.P., et al. A hybrid active power compensation device for balance of electrical railway system. In: Power System Technology (POWERCON), 2010 International Conference on. IEEE. 2010. P. 1-6.

Toksari, M.D. Ant colony optimization for finding the global minimum. Applied Mathematics and
Computation. 2006. Vol. 176(1). P. 308-316.

EXTRA FILES

COMMENTS