STRENGTH ANALYSIS OF EXPERIMENTAL CRANE, USING PROLIFTOR 250 ROPE WINCH AS AN EXCITATION OF A GIRDER

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

7
Reader(s)
15
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 13 , ISSUE 3 (September 2018) > List of articles

STRENGTH ANALYSIS OF EXPERIMENTAL CRANE, USING PROLIFTOR 250 ROPE WINCH AS AN EXCITATION OF A GIRDER

Tomasz HANISZEWSKI

Keywords : simulation, crane, dynamics, FE analysis

Citation Information : Transport Problems. Volume 13, Issue 3, Pages 131-142, DOI: https://doi.org/10.20858/tp.2018.13.3.12

License : (BY-NC-ND 4.0)

Received Date : 09-December-2016 / Accepted: 10-September-2018 / Published Online: 03-October-2018

ARTICLE

ABSTRACT

The article presents the research carried out on the experimental construction of a crane, where a hoist with an AC motor without a motor control system was used as an excitation signal for the girder. The purpose of the described research is to determine the relationship between the values of the dynamic surplus factor when lifting the load with the loose rope in the initial phase of lifting and the distance of the hoist from the supporting structure. The data was obtained based on the force tests in a steel wire rope and subsequent determination of the values of stresses and deflections accompanying the selected test cases for different positions of the vibration inductor using the FE method.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Bogdevičius, M. & Vika, A. Investigation of the dynamics of an overhead crane lifting process in a vertical plane. Transport. 2005. 20(5) p. 176-180. 

2. Haniszewski, T. Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation. J. Vibroeng. 2017. Vol. 19. Iss. 1. P. 75-86. 

3. Kosucki, A & Malenta, P. The possibilities of reducing the operational load of hoisting mechanisms in case of dynamic hoisting. Maintenance and Reliability. Vol. 18(3). June 2016. P. 390-395. 

4. Markusik, S. & Gąska, D. & Witaszek, K. Badania przyspieszeń i poziomów drgań w suwnicach pomostowych. Scientific Journal of Silesian University of Technology. Series Transport. 2007. Vol. 63. P. 181-186. Wydawnictwo Politechniki Śląskiej. Gliwice. [In Polish: Study of acceleration and vibration levels in bridge cranes].

5. Margielewicz, J. & Haniszewski, T. & Gąska, D. & Pypno C. Badania modelowe mechanizmów podnoszenia suwnic. Katowice: Polish Academy of Science. 2013. [In Polish: Model studies of cranes hoisting mechanisms]. 

6. Oguamanam, D.C.D. & Hansen, J.S. & Heppler, G.R. Dynamic response of an overhead crane system. Journal of Sound and Vibration. Vol. 213. No. 5. 1998. P. 889-906. 

7. Piątkiewicz, A. & Sobolski, R. Dźwignice. WNT. Warszawa, 1978. [In Polish: Cranes]. 

8. Reutov, A.A. & Kobishchanov, V.V. & Sakalo, V.I. Dynamic Modeling of Lift Hoisting Mechanism Block Pulley. Procedia Engineering. Vol. 150. 2016. P. 1303-1310. 

9. Savković Mile M. & Radovan, R. & Bulatović, Milomir M. & Gašić, Goran V. & Pavlović, A. & Stepanović, Z. Optimization of the box section of the main girder of the single-girder bridge crane by applying biologically inspired algorithms. Engineering Structures. Vol. 148. 2017. P. 452-465. 

10. Wu Jia-Jang Transverse and longitudinal vibrations of a frame structure due to a moving trolley and the hoisted object using moving finite element. International Journal of Mechanical Sciences. Vol. 50. No. 4. 2008. P. 613-625. 

11. Zrnić, N.Đ. &. Gašić, V.M. & Bošnjak, S.M. Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator. Archives of Civil and Mechanical Engineering. Vol. 15. No. 1. 2015. P. 243-250. 

12.  PN-EN 13001-2:2013. Bezpieczeństwo dźwignic. Ogólne zasady projektowania. Część 2: Obciążenia. Warszawa: Polski Komitet Normalizacyjny. [In Polish: Security of cranes. General principles for design. Part 2: Loads. Warsaw: Polish Committee of Standardization]. 

13. REN Hui-li, WANG Xue-lin, HU Yu-jin, and LI Cheng-gang. Dynamic Response Simulation of Lifting Load System of Ship-mounted Cranes. Journal of System Simulation. 2007. Vol. 19. No. 5. P. 2665-2668. 

14. Chen Huixian & Liu Shuang & Tang Qingtai. Dynamics Simulation and Analysis on Wire Rope of a Mine Hoist Based on SIMULINK. Mining & Processing Equipment. 2008. Vol. 36(9). P. 4447. 

15. Gąska, D. & Margielewicz, J. & Haniszewski, T. & Matyja, T. & Konieczny, Ł. & Chróst, P. Numerical identification of the overhead travelling crane's dynamic factor caused by lifting the load off the ground. Journal of Measurements in Engineering. 2015. Vol. 3(1). P. 1-8. 

16. Gąska, D. & Haniszewski, T. Modelling studies on the use of aluminium alloys in lightweight load-carrying crane structures. Transport Problems. 2006. Vol. 11(3). P. 13-20. 

17. Oguamanam, D.C.D. & Hansen, J.S. &. Heppler, G.R. Dynamic response of an overhead crane system. Journal of Sound and Vibration. 1998. Vol. 213(5). P. 889-906. 

EXTRA FILES

COMMENTS