DEVELOPMENT OF THE RAILWAY POINT ELECTRIC HEATING INTELLECTUAL CONTROL ALGORITHM

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

18
Reader(s)
40
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 15 , ISSUE 1 (March 2020) > List of articles

DEVELOPMENT OF THE RAILWAY POINT ELECTRIC HEATING INTELLECTUAL CONTROL ALGORITHM

Ruslans MUHITOVS * / Mareks MEZITIS / Ilja KORAGO

Keywords : railway; point heating; railway points; intellectual algorithm; fuzzy logic

Citation Information : Transport Problems. Volume 15, Issue 1, Pages 71-80, DOI: https://doi.org/10.21307/tp-2020-007

License : (CC BY 4.0)

Received Date : 23-September-2018 / Accepted: 04-March-2020 / Published Online: 26-March-2020

ARTICLE

ABSTRACT

The article reviews and describes the problems of the railway point heating conventional control system considering its structure, simple design, disadvantages and nonconformity. As a solution to the described problem, an innovative and advanced point heating control algorithm is proposed based on Mathlab’s Fuzzy Logic Designer module, which will allow control of heating more effectively and intellectually. The tasks for the advanced and intellectual point heating control system were set. The interdependency of different input variables and their weights of the proposed algorithm are shown and described. Conclusions show that the approach of introducing a control algorithm based on Fuzzy Logic will allow to control point heating in a more advanced and efficient way - switching on and off based on the interdependency of different weather conditions and weather forecast; the input data control system will decide automatically when to switch the heating on and off.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Теег, Г. & Власенко, С. (ред.). Системы автоматики и телемеханики на железных дорогах мира. Москва: Интекст. 2009. 496 p. [In Russian: Teeg, G. & Vlasenko, S. (eds.). Automation and telematics systems on the world’s railways. Moscow: Intext].

2. Kargin, A. & Panchenko, S. & Vasiljevs, A. & Petrenko, T. Implementation of cognitive perception functions in fuzzy situational control model. Procedia Computer Science. 2019. Vol. 149. P. 231-238.

3. Panchenko, S. & Siroklyn, I. & Lapko, A. & Kameniev, A. & Buss, D. Critical failures of turnouts: expert approach. Procedia Computer Science. 2019. Vol. 149. P. 422-429.

4. Леоненков, А.В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. Санкт-Петербург: БХВ-Петербург. 2005. 736 p. [In Russian: Leonenkov, A.V. Fuzzy modelling in MATLAB and fuzzyTECH. Saint-Petersburg: BHV- Petersburg].

5. Dorokhov, O. & Dorokhova, L. Fuzzy model in fuzzyTECH environment for the evaluation of transportation’s quality for cargo enterprises in Ukraine. Transport and Telecommunication. 2011. Vol. 12. No. 1. P. 25-33.

6. Dorokhov, O. & Chernov, V. The desirability and feasibility of using fuzzy modeling for risk assessment in information systems. Securitatea informaţională. The VII Conf. Intern. Chichineu. 2010. P. 18-22.

7. Lukasik, Z. & Nowakowski, W. & Ciszewski, T. & Freimane, J. A fault diagnostic methodology for railway automatics systems. Procedia Computer Science. 2019. Vol. 149. P. 159-166.

8. Ribickis, L. & Gorobecs, M. & Ļevčenkovs, A. Neuro-Immune Algorithm for Embedded RealTime Control System in Transport Safety Tasks. Frontiers in Artificial Intelligence and Applications. Las Palmas de Gran Canaria. 2018. P. 251-265.

9. Klir, G.J. & Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. New Jersey: Prentice Hall. 1995. 592 p.

10. Горелик, А.В. (ред.). Системы железнодорожной автоматики, телемеханики и связи. Москва: Учебно-методический центр по образованию на железнодорожном транспорте. 2012. 205 p. [In Russian: Gorelik, A.V. (ed.). Systems of railway automation, telemechanics and communication. Moscow: Training centre for education in railway transport]

11. Munakata, T. Fundamentals of the New Artificial Intelligence. London: Springer. 2008. 256 p.

12. Ross, T.J. Fuzzy logic with engineering applications. Third Edition. Chichester: John Wiley & Sons. 2010. 585 p.

13. Latvian Railway - Key Performance Indicators.  Available at: https://www.ldz.lv/sites/default/files/LDZ-raditaji-2019-LV-web.pdf.

14. Сапожников, В.В. & Сапожников, Вл.В. & Шаманов, В.И. Надежность систем железнодорожной автоматики, телемеханики и связи. Москва: Маршрут. 2003. 263 p. [In Russian: Sapozhnikov, V.V. & Sapozhnikov, Vl.V. & Shamanov, V.I. Reliability of railway automation, telemechanics and communication systems. Moscow: Marshrut].

15. Russell, S. & Norvig, P. Artificial intelligence: a modern approach. New Jersey: Prentice Hall. 2009. 932 p.

EXTRA FILES

COMMENTS