DEVELOPMENT OF THE MATHEMATICAL MODEL OF FUEL EQUIPMENT AND JUSTIFICATION FOR DIAGNOSING DIESEL ENGINES BY INJECTOR NEEDLE DISPLACEMENT

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

30
Reader(s)
61
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 15 , ISSUE 1 (March 2020) > List of articles

DEVELOPMENT OF THE MATHEMATICAL MODEL OF FUEL EQUIPMENT AND JUSTIFICATION FOR DIAGNOSING DIESEL ENGINES BY INJECTOR NEEDLE DISPLACEMENT

Igor DANILOV * / Aleksander MARUSIN / Mikhail MIKHLIK / Ivan USPENSKY

Keywords : diagnostics; diesel fuel equipment; injector needle displacement;  mathematical model; optical sensor

Citation Information : Transport Problems. Volume 15, Issue 1, Pages 93-104, DOI: https://doi.org/10.21307/tp-2020-009

License : (CC BY 4.0)

Received Date : 03-October-2018 / Accepted: 06-March-2020 / Published Online: 26-March-2020

ARTICLE

ABSTRACT

This article discusses the proposed method for diagnosing diesel fuel equipment. An analysis of available methods for diagnosing fuel equipment has been carried out. The authors describe their method for diagnosing plunger pairs of a highpressure fuel pump according to the parameter of displacement of the injector needle. The design of the diagnostic device for measuring the movement of the injector needle has been developed and patented. The dependence of the maximum displacement of the injector needle on the increase, due to wear, of the radial clearance of the plunger bushing at the minimum steady state of idling of the engine has been determined. The technique of diagnosing the technical condition of plunger pairs of a high-pressure fuel pump by injector needle displacement is considered in detail.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Агарков А.М. Общие вопросы диагностики двигателей. Образование, наука, производство. Белгород: Изд-во БГТУ, 2015. С. 910-914. [In Russian: Agarkov, A.M. General questions of diagnostics of engines. Education, science, production. Belgorod: Publishing House of the Baltic State Technical University. 2015. P. 910-914].

2. Грехов, Л.В. & Габитов, И.И. & Неговора, А.В. Проектирование, расчет и техническое обслуживание систем подачи дизельного топлива. Москва: Легион. 2013. 292 с. [In Russian: Grekhov, L.V. & Gabitov, I.I. & Negovora, A.V. Design, calculation and technical service of fuel equipment of modern diesel engines: Textbook. Moscow: Publishing House of the Legion. 2013. 292 p.]

3. Jaworski, A. & Kuszewski, H. & Lew, K. & Ustrzycki, A. Ocena przydatności paliw zastȩpczych do silników o ZS autobusów miejskich na podstawie wybranych parametrów wtrysku. Systemy  i Środki Transportu Samochodowego. 2012. P. 143-148. [In Polish: Jaworski, A. & Kuszewski, H. & Lew, K. & Ustrzycki, A. Evaluation of the suitability of substitute fuels for engines with ZS of city buses on the basis of selected injection parameters. Systems and means of transport of cars. 2012. P. 143-148].

4. Gilles, T. Automotive engines: Diagnosis, repair, rebuilding. Sixth edition. Cengage Learning. 2010. 752 p.

5. Isermann, R. Combustion engine diagnosis. Springer Vieweg. 2017. 303 p.

6. James, D. Advanced engine performance diagnosis. Sixth edition. Paper. 2015. 432 p.

7. Данилов, И.К. & Марусин, А.В. & Марусин, А.В. Пат. РФ на ПМ №152362, МПК F02M47/00. Форсунка дизельного двигателя внутреннего сгорания. Бил. №15, 2015. [In Russian: Danilov, I.K. & Marusin, A.V. & Marusin, A.V. Patent of the Russian Federation for utility model  No. 152362, F02M47/00. Injection of a diesel engine of internal combustion. Bil. №15, 2015].

8. Грехов, Л.В. & Иващенко, Н.Ф. & Марков, В.Ф. Топливные системы и дизельное управление. Москва: Легион. 2005. 344 с. [In Russian: Grekhov, L.V. & Ivaschenko, N.F. & Markov, V.F. Fuel systems and diesel control. Moscow: Legion-Autodata. 2005. 344 p.].

9. Baratta, M. & Catania, A. & Ferrari, A. Hydraulic circuit design rules to remove the dependence of the injected fuel amount on dwell time in multijet CR systems. ASME. J. Fluids Eng. 2008.  Vol. 130(12). P. 121104-121104-13. DOI:10.1115/1.2969443.

10. Sundarraman, P. & Baskaran, R. & Sunilkumar, V. & et al. Multibody dynamics modeling and experimental validation of fuel-injection pump. ICORD 11: Proceedings of the 3rd International Conference on Research into Design Engineering. Bangalore, India. 2011. P. 397-404.

11. Achleitner, E. & Bäcker, H. & Funaioli, A. Direct injection systems for Otto engines. SAE Technical Paper. 2007. No 2007-01-1416.

12. Catania, A.E. & Ferrari, A. & Manno, M. Development and application of a complete multijet common-rail injection-system mathematical model for hydrodynamic analysis and diagnostics. ASME. J. Eng. Gas Turbines Power. 2008. Vol. 130(6). P. 062809-1 - 062809-13. DOI: 10.1115/1.2925679.

13. Kouremenos, D.A. & Hountalas, D.T. & Kouremenos, A.D. Development and Validation of a Detailed Fuel Injection System Simulation Model for Diesel Engines. SAE Technical Paper. 1999. No 1999-01-0527.

EXTRA FILES

COMMENTS