Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X



VOLUME 15 , ISSUE 3 (September 2020) > List of articles



Keywords : railway ballast; ballast tamping; photogrammetric measurements; FEM simulation

Citation Information : Transport Problems. Volume 15, Issue 3, Pages 93-106, DOI: https://doi.org/10.21307/tp-2020-036

License : (CC BY 4.0)

Received Date : 18-May-2019 / Accepted: 26-August-2020 / Published Online: 05-September-2020



Ballast layer is the most weak element of railway track that causes track geometry deterioration. At the same time, it is subjected to intensive particle breakage during the corrective tamping. This causes high maintenance costs of ballasted track. The present paper is devoted to the study of tamping methods. The present machine tamping methods are considered and compared. The possible influence of the tamping technology on the ballast-related maintenance costs is analyzed. The side tamping technology is studied in detail with theoretical and experimental methods. The process of material transport during the side tamping is studied using a scale model of ballast layer and photogrammetric measurements. A theoretical finite element model (FEM) is validated to the experimental results. The study shows that the side tamping is a promising method for the development of a universal, superstructure independent tamping technology.

Content not available PDF Share



1. Fendrich, L. & Fengler, W. Handbuch Eisenbahninfrastruktur. Berlin Heidelberg: SpringerVerlag. 2013. 1105 p. DOI: 10.1007/978-3-642-30021-9. [In German: Handbook of railway infrastructure].

2. Lichtberger, B. Track compendium: formation, permanent way, maintenance, economics. Hamburg: Eurailpress. 2005. 634 p.

3. Selig, E.T. & Waters, J.M. Track Geotechnology and Substructure Management. London: Thomas Telford. 1994. 39-61 p.

4. Indraratna, B. & Salim, W. & Rujikiatkamjorn, C. Advanced rail geotechnology - Ballasted track. Taylor and Francis Group. 2011. 410 p.

5. Li, D. & Hyslip, J. & Sussmann, T. & Chrismer, S. Railway Geotechnics. CRC Press. 2015. P. 90- 95. DOI: 10.1201/b18982-4.

6. Ižvolt, L. & Šestáková, J. & Šmalo, M. Tendencies in the development of operational quality of ballasted and ballastless track superstructure and transition areas. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 236(1). No. 012038. P. 1-8. DOI: 10.1088/1757- 899X/236/1/012038.

7. Ižvolt, L. & Šestáková, J. & Šmalo, M. The railway superstructure monitoring in bratislava tunnel no. 1 - Section of ballastless track and its transition areas. MATEC Web of Conferences. 2017. Vol. 117. No. 00063. P. 1-8. DOI: 10.1051/matecconf/201711700063.

8. Ižvolt, L. & Šmalo, M. & Malchová, J. The quality evaluation of the ballastless track construction in the area of Bratislava tunnel no. 1. MATEC Web of Conferences. 2016. Vol. 86. No. 05001. P. 1-7. DOI: 10.1051/matecconf/20168605001.

9. Ižvolt, L. & Šestáková, J. & Šmalo, M. Impact of operation on the geometric parameters of the track in ballastless track transition area. MATEC Web of Conferences. 2017. Vol. 107. No. 00019. P. 1-8. DOI: 10.1051/matecconf/201710700019.

10. Salajka, V. & Kala, J. & Plášek O. Dynamical response of railway switches and crossings. MATEC Web of Conferences. 2017. Vol. 107. No. 00018. P. 1-6. DOI: 10.1051/matecconf/201710700018.

11. Plášek, O. & Hruzikova, M. Under sleeper pads in switches & crossings. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 236(1). No. 012045. P. 1-8.

12. Plášek, O. & Hruzíková, M. & Svoboda, R. & Vendel, J. Influence of under sleeper pads on track quality. Akustika. 2015. Vol. 23(1) P. 28-33.

13. Fischer, S.Z. & Horvat, F. Investigations of the reinforcement and stabilisation effect of geogrid layers under railway ballast. Slovak Journal of Civil Engineering. 2011. Vol. 19(3). P. 22-30.

14. Nabochenko, O. & Sysyn, M. & Kovalchuk, V. & Kovalchuk, Y. & Pentsak, A. & Braichenko, S. Study railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 1. No. 7(97). P. 50-59. DOI: 10.15587/1729-4061.2019.154864.

15. Sysyn, M. & Gerber, U. & Gruen, D. & Nabochenko, O. & Kovalchuk, V. Modelling and vehicle based measurements of ballast settlements under the common crossing. European Transport - Trasporti Europei. 2019. Vol. 71. No. 5. P. 1-25.

16. Fischer, S. & Juhasz, E. Railroad ballast particle breakage with unique laboratory test method. Acta Technica Jaurinensis. 2019. Vol. 12. No. 1. P. 26-54.

17. Fischer, S. Breakage test of railway ballast materials with new laboratory method. Periodica Polytechnica Civil Engineering. 2017. Vol. 61(4). P. 794-802. DOI: 10.3311/PPci.8549.

18. Wang, B. & Martin, U. A random form generator for ballast stones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2018. Vol. 232. No. 6. P. 1660-1670. DOI: 10.1177/0954409717743604.

19. Wang, B. & Martin, U. & Rapp, S. Discrete element modeling of the single-particle crushing test for ballast stones. Computers and Geotechnics. 2017. Vol. 88. P. 61-73. DOI: 10.1016/j.compgeo.2017.03.007.

20. Wang, B. & Martin, U. & Rapp, S. Vibration Characteristic Analysis of Ballast with Different Aspect Ratios by Means of the Discrete Element Method. Geotechnical Special Publication. 2016. January (268 GSP). P. 16-23. DOI: 10.1061/9780784480113.003.

21. Bach, H. Evaluation of attrition tests for railway ballast. PhD thesis. Graz University of Technology. 2013.

22. Bhanitiz, A. A laboratory study of railway ballast behaviour under traffic loading and tamping maintenance. PhD thesis. University of Nottingham. 2007.

23. Soleimanmeigouni, I & Ahmadi, A. & Khouy, I.A. & Letot, C. Evaluation of the effect of tamping on the track geometry condition. A case study, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2016. Vol. 232. No. 2. P. 408-420. DOI: 10.1177/0954409716671548.

24. Audley, M. & Andrews, J. D. The effects of tamping on railway track geometry degradation. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013. Vol. 227. No. 4. P. 376-391. DOI: 10.1177/0954409713480439.

25. Aingaran, S. & Le Pen, L. & Zervos, A. & Powrie, W. Modelling the effects of trafficking and tamping on scaled railway ballast in triaxial tests. Transportation Geotechnics. 2018. Vol. 15. P. 84-90. DOI: 10.1016/j.trgeo.2018.04.004.

26. Sysyn, M. & Gerber, U. & Kovalchuk, V. & Nabochenko, O. The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport. 2018. Vol. 46. No. 3. P. 91-107. DOI: 10.5604/01.3001.0012.6512.

27. Ilinykh, A. & Manakov, A. & Abramov, A. & Kolarzh, S. Quality assurance and control system for railway track tamping. MATEC Web of Conferences. 2018. Vol. 216. No. 03004. DOI: 10.1051/matecconf/201821603004.

28. Bold, R.D. Non-destructive evaluation of railway tracked ballast. PhD thesis. Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh. 2011.

29. Sysyn, M. & Nabochenko, O. & Gerber, U. & Kovalchuk, V. Evaluation of railway ballast layer consolidation after maintenance works. Acta Polytechnica. 2019. Vol. 59. No. 1. P. 77-87. DOI: 10.14311/AP.2019.59.0077.

30. Sysyn, M. & Kovalchuk, V. & Gerber, U. & Nabochenko, O. & Parneta, B. Laboratory evaluation of railway ballast consolidation by the non-destructive testing. Communications - Scientific Letters of the University of Zilina. 2019. Vol. 21. No. 2. P. 1-12.

31. Sysyn, M. & Kovalchuk, V. & Gerber, U. & Nabochenko, O. & Pentsak, A. Experimental study of railway ballast consolidation inhomogeneity under vibration loading. Pollack Periodica. 2020. Vol. 15. No. 1, P. 27-36. DOI: 10.1556/606.2020.15.1.3

32. Kim, D.S. & Hwang, S.H. & Kono, A. & Matsushima, T. Evaluation of ballast compactness during the tamping process by using an image-based 3D discrete element method. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2018. Vol. 232. No. 7. P. 1951-1964. DOI: 10.1177/0954409718754927.

33. Zhou, T.Y. & Hu, B &, Zhao, X.Y. & Yan, B. Numerical study porosity of railway ballast during tamping process. Advanced Materials Research. 2014. Vols. 919-921. P. 1124-1127. DOI: 10.4028/www.scientific.net/AMR.919-921.1124.

34. Zhou, T. & Hu, B. & Sun J. Study of railway ballast compactness under tamping operation. Journal of Applied Sciences. 2013. Vol. 13. No. 11. P. 2072-2076. DOI: 10.3923/jas.2013.2072.2076.

35. Perales, R & Saussine, G. & Radjai, F. Optimizing the tamping process to reduce track settlement. 7th EUROMECH Solid Mechanics Conference (ESMC2009). Sep 2009, Lisbonne, Portugal.

36. Zaytsev, A.A. & Abrashitov, A.A. & Sydrakov, A.A. 1g physical modelling of the stoneblowing technique for the improvement of railway track maintenance. Physical Modelling in Geotechnics. 2018. Vol. 1. P. 203-206.

37. Abrashitov, A. & Semak A. Experimental Study of Stoneblowing Track Surfacing Technique. Procedia Engineering. 2017. Vol. 189. P. 75-79. DOI: 10.1016/j.proeng.2017.05.013.

38. Sol-Sánchez, M. & Moreno-Navarro, F. & Rubio-Gámez, M.C. Analysis of ballast tamping and stone-blowing processes on railway track behaviour: The influence of using USPs. Geotechnique. 2016. Vol. 66. No. 6. P. 481-489. DOI: 10.1680/jgeot.15.P.129.

39. Kaplin, V.N. & Abrashitov, A.A. & Grin,’ E.N. Technology and determination of the applicability of stone blowing at the current track maintenance. Vestnik of the Railway Research Institute. 2020. Vol. 79. No. 2. P. 74-79. DOI: https://doi.org/10.21780/2223-9731-2020-79-2-74-79.

40. Atamanyuk, A. Technology of ballast layer compaction by machines of type VPO in the process of deep ballast cleaning. PhD thesis. St. Petersburg State Transport University, St.-Petersburg. 2010.

41. Tamping technology of Robel. Available at: http://www.bdf007.privat.tonline.de/_stopfmaschinen-ohne-plasser/strobel-supermat/strobel-supermat.htm.

42. Lichtberger, B. Der neu entwickelte Universal Tamper 4.0. EI-Eisenbahningenieur. 2018. No. 8. P. 2-8. [In German: New developed Universal Tamper 4.0].

43. Lichtberger, B. Vollhydraulisch Stopfen - eine neue Technologie für effiziente Instandhaltung, EIEisenbahningenieur. 2015. No. 7. P. 18-22. [In German: Full-hydraulic tamping – a new technology for effective tamping].

44. Pfaff, N. Vergleich von räumlicher und lokaler Stopftechnologie. Master Thesis. Technische Universität Dresden. 2018. [In German: Comparison of spatial and local tamping technologies].

45. Tamping technology of Plasser & Theurer. Available at: https://www.plassertheurer.com/de/maschinen-systeme/stopfung.html.

46. Unbehaun, O. Breitschwellengleis – erste Testergebnisse. EI-Eisenbahningenieur. 2000. Vol. 51. No. 9. P. 106-113. [In German: Wide sleepers – first test results].

47. Rail.One, Wide sleeper track. Available at: https://www.railone.com.

48. Rießberger, K. Festere Fahrbahn auf Schotter. ETR Eisenbahntechnische Rundschau. 2002. Vol. 51. No. 4. P. 183-193. [In German: Stable railway on gravel].

49. Lee, S. & Akhmetov, M. & Ibraimov, A. & Taran, M. Upgrading of vibrating compactor of the railway track ballast of VPO-3000 machine. Transport Problems. 2012. Vol. 7. No. 4. P. 95-105.

50. Bay, H. & Ess, A. & Tuytelaars, T. & Van Gool L. SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU). 2008. Vol. 110. No. 3. P. 346-359.

51. Smith, I.M. & Griffiths, D.V. & Margetts, L. Programming the Finite Element Method. Fifth Edition. Wiley. 2014.

52. Zienkiewicz, O.C. & Taylor, R.L. The Finite Element Method. Fifth Edition. ButterworthHeinemann. 2000.