OPPORTUNITIES TO IMPROVE THE EFFICIENCY OF THE "GWAREK 1200" BELT CONVEYOR

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

16
Reader(s)
43
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 15 , ISSUE 4, Part 2 (December 2020) > List of articles

OPPORTUNITIES TO IMPROVE THE EFFICIENCY OF THE "GWAREK 1200" BELT CONVEYOR

Grzegorz PERUŃ * / Bogusław ŁAZARZ / Tadeusz OPASIAK

Keywords : belt conveyor; roller, drive power; vibroacoustic diagnostic

Citation Information : Transport Problems. Volume 15, Issue 4, Part 2, Pages 215-226, DOI: https://doi.org/10.21307/tp-2020-061

License : (CC BY 4.0)

Received Date : 05-April-2019 / Accepted: 04-December-2020 / Published Online: 31-December-2020

ARTICLE

ABSTRACT

The article presents the results of research of the Gwarek 1200 belt conveyor. The work aimed to determine the possible benefits of changing the type of rollers used. It was expected that the change of the rollers from N-type to C-type will reduce the costs of energy consumed by the conveyor drive system. This part of the research was carried out in a hard coalmine at the level of 665 m. The test was given the entire power unit in terms of the starting power demand and rated power in real time. Measurement works were carried out before and after the modernization of the conveyor for 5 years. Moreover, it was decided to extend the research to include vibroacoustic tests, aimed at determining the technical condition by measuring vibrations. It is expected that based on the analysis of vibration signals in the long term will allow to develop a method for diagnosing belt conveyor rollers and to quickly detect their malfunction under normal operating conditions.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Qiu, X. & Chai, C. Estimation of Energy Loss in Conveyor Systems due to Idler Indentation. Journal of Energy Engineering. 2011. Vol 137. No. 1. P. 36-43.

2. Anath, K.N. & Rakesh, V. & Visweswarao. P.K. Design and Selecting Proper Conveyor Belt. International Journal of Advanced Engineering Technology. 2013. Vol. 4. No. 2. P. 43-49.

3. Golka, K. & Bolliger, G. & Vasili, C. Belt conveyors. Principles for calculation and design. Costa Vasili. Australia. 2007. 300 p.

4. Antoniak, J. Przenośniki taśmowe w górnictwie podziemnym i odkrywkowym. Energooszczędne. Wydawnictwo Politechniki Śląskiej. Gliwice. 2010. 256 p. [In Polish: Belt conveyors in underground mining and surface mining. Energy-saving].

5. Wheeler, C. & Munzenberger, P. & Ausling, D. & Beh. B. How to design energy efficient belt conveyors. Bulk Solids Handling. 2015. Vol. 35. No. 6. P. 40-50.

6. Lu, Y. Investigation on indentation rolling resistance of belt conveyor based on Hertz contact theory compared with one-dimensional Winkler foundation. Advances in Mechanical Engineering. 2018. Vol. 10. No. 7. P. 1-9.

7. Qiu, X. Full Two-dimensional Model for Rolling Resistance: Hard Cylinder on Viscoelastic Foundation of Finite Thickness. Journal of Engineering Mechanics. 2006. Vol. 132. No. 11. P. 1241-1251.

8. Robinson, P. & Wheeler, C. The indentation rolling resistance of spherically profiled idler rolls, International Journal of Mechanical Sciences. 2016. Vol. 106. P. 363-371.

9. Bajda, M. & Hardygóra, M. & Gładysiewicz, L. Effect of rubber compounds on the energy consuming by conveyor transport. Transport Przemysłowy. 2007. Vol. 3. P. 12-15.

10. Lodewijks, G. The next generation of low loss conveyor belts. Bulk Solids Handling. 2012. Vol. 32. No 1. P. 52-56.

11. Steven, R.B. Conveyor belt rubbers minimize your power consumption, maximise your capacity. In: 11th International Congress on Bulk Material Storage, Handling and Transportation. The University of Newcastle. Centre for Bulk Solids and Particulate Technologies and TUNRA Bulk Solids. Australia. 2013.

12. Król, R. Studies of The Durability of Belt Conveyor Idlers with Working Loads Taken into Account. World Multidisciplinary Earth Sciences Symposium (WMESS 2017). IOP Conf. Series: Earth and Environmental Science. 2017. P. 95-106.

13. Kawalec, W. & Woźniak, D. Energooszczędność okładki bieżnej taśmy przenośnikowej – wstęp do nowej klasyfikacji taśm. Mining Science. 2014. Vol. 21. No. 2. P. 47-60. [In Polish: Energy efficiency of the bottom cover of a conveyor belt – the first step to the new classification of belts].

14. Król, R. & Kisielewski, W. Wpływ krążników na energochłonność przenośnika taśmowego. Mining Science. 2014. Vol. 21. No. 2. P. 61-72. [In Polish: The influence of idlers on energy consumption of belt conveyor].

15. Opasiak, T. & Peruń, G. Influence of construction the rollers C type on resistance of rotating driven system of the belt conveyor. Diagnostyka. 2016. Vol. 17. No. 1. P. 81-86.

16. Opasiak, T. & Peruń, G. Testing laboratory the reinforced construction rollers bearing hubs. In: VI International scientific conference. III International symposium of young researchers. “Transport Problems”. Katowice: Silesian University of Technology. Faculty of Transport. Katowice. 2014. P. 890-897.

17. Hötte, S. & Daacke, S.V. & Schulz, L. Overmeyer, L. Wennekamp, T. The Way to DIN 22123 - Indentation Rolling Resistance of Conveyor. Belts bulk solids handling. Germany. 2012. Vol. 32. No. 6. P. 48-52.

18. Hager, M. & Geesmann, F. Investigation of the resistance to motion of belt conveyors with a large mass flow. Surface Mining Braunkohle and Other Minerals. 2002. Vol. 54. No. 3. P. 208-224.

19. SKF Rolling bearings. SKF Group. 2018. Available at: https://www.skf.com/my/products/rollingbearings.

20. Bartelmus, W. Diagnostyka maszyn górniczych. Górnictwo odkrywkowe. Wydawnictwo Śląsk. Katowice. 1998. 264 p. [In Polish: Diagnostics of mining machines. Surface mining].

21. PN-M-46606: 2010. Przenośniki taśmowe - Krążniki. Warszawa: Polski Komitet Normalizacyjny. 40 p. [In Polish: Belt conveyor - Rollers. Warsaw: Polish Committee of Standardization].

EXTRA FILES

COMMENTS