VERIFICATION OF THE CONDITIONS FOR WHIPLASH-TYPE INJURIES WITH THE SDC METHOD USING THE SRS-AIRBAG SYSTEM ACTIVATION PARAMETERS

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

9
Reader(s)
10
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 15 , ISSUE 4, Part 2 (December 2020) > List of articles

VERIFICATION OF THE CONDITIONS FOR WHIPLASH-TYPE INJURIES WITH THE SDC METHOD USING THE SRS-AIRBAG SYSTEM ACTIVATION PARAMETERS

Piotr ALEKSANDROWICZ * / Iwo ALEKSANDROWICZ

Keywords : whiplash; rear impact; fraud; SRS-AIRBAG; SDC method; V-SIM

Citation Information : Transport Problems. Volume 15, Issue 4, Part 2, Pages 301-310, DOI: https://doi.org/10.21307/tp-2020-068

License : (CC BY 4.0)

Received Date : 01-July-2019 / Accepted: 10-December-2020 / Published Online: 31-December-2020

ARTICLE

ABSTRACT

A problem of car insurance frauds usually refers to reporting non-existent car crash circumstances to acquire the funds required for a car repair. However, the problem is not limited only to this kind of costs. Recently, numerous damage claims connected with spine trauma caused by rear-end collisions have been reported. These are the so-called whiplash injuries caused by a rear impact. Such damage is difficult to verify and hence a necessity to use more effective claim verification methods. An analysis of a collision in the SDC convention makes it possible to determine whether its circumstances were consistent with the reports of drivers involved in it. The aim of the analysis presented in this article has been to determine a possibility of using SRS-AIRBAG activation parameters to determine, with the SDC method, whether the circumstances of a collision reported were consistent with those responsible for a whiplash injury. The article provides an analysis of a series of rear-end collisions of vehicles moving in a column. The results have proven that the SDC procedure can be applied to verify the probability of a whiplash injury. With the above, this study is both academic and practical, and the results can provide benefits to vehicle collision researchers, experts, and students.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Sadgali, I. & Sael, N. & Benabbou, F. Performance of machine learning techniques in the detection of financial frauds. Procedia Computer Science. 2019. Vol. 148. P. 45-54. DOI: 10.1016/j.procs.2019.01.007.

2. Ulaga Priya, I. & Pushpa, S. A survey on fraud analytics using predictive model in insurance claims. International Journal of Pure and Applied Mathematics. 2017. Vol. 114. No. 7. P. 755-767.

3. Arezo, B. & Teimourpour, B. The detection of professional fraud in automobile insurance using social network analysis. Computer Science Social and Information Networks. 2018. Vol. 2. P. 1-37.

4. Ghorbani, A. & Farzai, S. Fraud detection in automobile insurance using a data mining based approach. International Journal of Mechatronics, Electrical and Computer Technology. 2018. Vol. 8. No. 27. P. 3764-3771. DOI: IJMEC/10.225163.

5. Raport przestępczości ubezpieczeniowej 2018r. Polska Izba Ubezpieczeń. Available at: https://piu.org.pl/wp-content/uploads/2020/01/032-analiza-przestepstw-2018.pdf [In Polish: Insurance crime report 2018. Polish Insurance Chamber].

6. Wierciński, J. & Reza, A. (red.) Wypadki Drogowe. Vademecum biegłego Sądowego. Kraków: Wydawnictwo Instytutu Ekspertyz Sądowych. 2011. 207 p. [In. Polish: Wierciński, J. & Reza, A. (ed.) Road accidents. Vademecum of a court expert. Cracow: Institute of Forensic Research Publishing].

7. Aleksandrowicz, P. Analysis of vehicle collisions with the SDC method. In: 23rd International Conference Engineering Mechanics. Svratka. 2017. P. 78-81.

8. Liu, Q. & Liu, J. & Wu, X. & Cao, L. & Guan, F. An inverse reconstruction approach considering uncertainty and correlation for vehicle-vehicle collision accidents. Structural and Multidisciplinary Optimization. 2019. Vol. 60. P. 681-698. DOI: 10.1007/s00158-019-02231-9.

9. Virtual Crash. Available at: https://www.vcrashusa.com/insurance.

10. V-SIM. Available at: https://cybid.com.pl/v-sim/.

11. Aleksandrowicz, P. Selection of collision detection model on the basis of a collision of incompatible vehicles. In: Proceedings of 24th International Conference Engineering Mechanics. Svratka. 2018. P. 21-24.

12. Kučera, P. & Pištěk, V. Prototyping a system for truck differential lock control. 2019. Sensors. Vol. 19. No. 16. P. 1-18. DOI: 10.3390 / s19163619.

13. Kučera, P. & Pištěk, V. Testing of the mechatronic robotic system of the differential lock control on a truck. International Journal of Advanced Robotic Systems. 2017. Vol. 14. No. 5. P. 1-7. DOI: 10.1177/1729881417736897.

14. Zalewski, J. Selected problems of motor vehicle maintenance after side impact collision. MATEC Web Conf. 2019. Paper No. 01019 182. DOI: 10.1051/matecconf/201818201019.

15. Smit, S. & Tomasch, E. & Kolk, H. & Plank, M. & Gugler, J. & Glaser, H. Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS. European Transport Research Review. 2019. Vol. 11. DOI: 10.1186/s12544-018-0343-3.

16. Gidlewski, M. & Prochowski, L. & Jemioł, L. & Żardecki, D. The process of front-to-side collision of motor vehicles in terms of energy balance. Nonlinear Dynamics. 2019. Vol. 97. P. 1877-1893. DOI: 10.1007/s11071-018-4688-x.

17. Brösdorf, K. Dangered or confessed? In: Proceedings of 23rd EVU Annual Congress. Kopenhagen. 2016. P. 1-6.

18. Gulyaev, V. & Loginov, N. & Kozlov, A. Method of designing the superstructure of the car body based on the requirements of low-speed collisions. In: 9th International Scientific Practical Conference on Innovative Technologies in Engineering. Journal of Physics. Conference Series. 2018. Vol. 1059. DOI: 10.1088/1742-6596/1059/1/012021.

19. Euro NCAP’s whiplash tests. Available at: https://www.euroncap.com/en/vehicle-safety/theratings-explained/adult-occupant-protection/rear-impact/whiplash/.

20. Vázquez, C. & Barús, J. & Maldonado, A. The importance of the impact biomechanics on the assessment of whiplash injury. Spanish Journal of Legal Medicine. 2016. Vol. 42. No. 2. P. 72-80. DOI: 10.1016/j.remle.2016.10.002.

21. Rydman, E. & Ponzer, S. & Brisson, R. & Ottosson, C. & Pettersson-Järnbert, H. Long term follow up of whiplash injuries reported to insurance companies: a cohort study on patientreported outcomes and impact of financial compensation. European Spine Journal. 2018. Vol. 27. No. 4. P. 1-7. DOI: 10.1007/s00586-018-5507-2.

22. Anderson, C. & Yeung, E. & Tong, T. & Reed, N. A narrative review on cervical interventions in adults with chronic whiplash-associated disorder. BMJ Open Sport Exercise Medicine. 2018. Vol. 4. No. 1. P. 1-8. DOI: 10.1136/bmjsem-2017-000299.

23. Prochowski, L. & Unarski, J. & Wach, W. & Wicher, J. Pojazdy Samochodowe. Podstawy rekonstrukcji wypadków drogowych. Warszawa: Wydawnictwa Komunikacji i Łączności. 2015. 245 p. [In. Polish: Prochowski, J. & Unarski, W. & Wach, J. &Wicher, J. Motor vehicles. Basics of road accident reconstruction. Warsaw: Transport and Communication Publishers].

24. Diupero, T. & Wolski, E. Poduszki powietrzne. Kryteria zadziałania i praktyczna ocena właściwości ochronnych. Stowarzyszenie Rzeczoznawców Techniki Samochodowej i Ruchu drogowego. 2006. Vol. 1. P. 45-53. [In. Polish: Diupero, T. Wolski, E. Airbags. Performance criteria and practical assessment of protective properties. Association of Automotive Technology and Road Traffic Experts. Warsaw].

25. Boruta, G. & Piętak, A. Mechatronika samochodu. Układy bezpieczeństwa czynnego i biernego. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego. 2012. 207 p. [In. Polish: Boruta, G. & Piętak, A. Active and passive safety systems. Olsztyn: Publishing University of Warmia and Mazury].

EXTRA FILES

COMMENTS