Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X



VOLUME 16 , ISSUE 1 (March 2021) > List of articles


Kamil DUDA * / Sławomir WIERZBICKI / Maciej MIKULSKI / Łukasz KONIECZNY / Bogusław ŁAZARZ / Magdalena LETUŃ-ŁĄTKA

Keywords : biodiesel; fuel blending; exhaust emissions; common-rail; engine efficiency

Citation Information : Transport Problems. Volume 16, Issue 1, Pages 39-49, DOI: https://doi.org/10.21307/tp-2021-004

License : (CC BY 4.0)

Received Date : 03-August-2019 / Accepted: 18-January-2021 / Published Online: 15-March-2021



In the present work, biofuels produced from different raw fatty materials have been proposed as a dominant fuel component in biodiesel–diesel fuel blends. Biofuels were produced from pork lard and rapeseed oil by alkali transesterification using methyl alcohol. Blends of biofuels in volumetric proportions of 60 and 80% of the biocomponent and the remaining part of the conventional fuel were used in a compression ignition engine designed for medium-duty vehicles. The experiments were conducted at two engine rotational speeds (1500 and 3000 rpm, respectively) and a set of load conditions (50, 100, and 200 Nm, respectively). The tests focused on engine efficiency parameters (brake-specific fuel consumption and brake fuel conversion efficiency) as well as exhaust gas emissions (hydrocarbons, carbon monoxide, and carbon dioxide were determined). The obtained results indicate that blends containing biocomponents produced from pork lard were characterized by superior fuel consumption and efficiency results, compared to blends containing biocomponents produced from rapeseed oil. In terms of exhaust emissions, biocomponents produced from pork lard were also characterized by lower emission of all of the examined components compared to rapeseed methyl ester–diesel blends. This study proposes that fuel components obtained from custom (animal) raw-fatty material can be an effective substitute for commonly used rapeseed oil methyl esters.

Content not available PDF Share



1. van Essen, H. & Nieuwenhuijse, I. & de Bruyn, S. & Hoen, A. Health impacts and costs of diesel emissions in the EU. Delft: CE Delft. 2018. 72 p.

2. Landrigan, P.J. & Fuller, R. & Acosta, N.J.R. & et al. The lancet commission on pollution and health. Lancet. 2018. Vol. 391. P. 462-512.

3. Huang, Y. & Shen, H.Z. & Chen, Y.L. & et al. Global organic carbon emissions from primary sources from 1960 to 2009. 2015. Atmospheric Environment. Vol. 122. P. 505-512.

4. Kroll, J.H. & Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment. 2008. Vol. 42. No. 16. P. 3593-3624.

5. Witaszek, K. Modeling of fuel consumption using artificial neural networks. Diagnostyka. 2020. Vol. 21. No. 4. P. 103-113.

6. Verbruggen, F.J.R. & Hoekstra, A. & Hofman, T. Evaluation of the state-of-the-art of full-electric medium and heavy-duty trucks. 2018. Kobe: Society of Automotive Engineers of Japan. 8 p.

7. Johnson, T. Diesel engine emissions and their control an overview. Platinum Metals Rev. 2008. Vol. 52. No. 1. P. 23-37.

8. Grzelak, P. & Żółtowski, A. Environmental assessment of the exploitation of diesel engines powered by biofuels. Combustion Engines. 2020. Vol. 180. No. 1. P.31-35.

9. Atadashi, I.M. & Aroua, M.K. & Aziz, A.A. High quality biodiesel and its diesel engine application: a review. Renewable and Sustainable Energy Reviews. 2010. Vol. 14. No. 7. P. 1999-2008.

10.Bekdemir, C. & Baert, R. & Willems, F. & Somers, B. Towards control-oriented modeling of natural gas-diesel RCCI combustion. SAE Technical Paper. 2015. 2015-01-1745

11.Kleinová, A. & Vailing, I. & Lábaj, J. & Mikulec, J. & Cvengroš, J. Vegetable oils and animal fats as alternative fuels for diesel engines with dual fuel operation. Fuel Processing Technology. 2011. Vol. 92. P. 1980-1986.

12.Wierzbicki, S. Evaluation of the effectiveness of on-board diagnostic systems in controlling exhaust gas emissions from motor vehicles. Diagnostyka. 2019. Vol. 20. No. 4. P. 75-79.

13.PN-EN 590+A1:2017-06 PN EN 14214. Paliwa do pojazdów samochodowych - Oleje napędowe - Wymagania i metody badań. Warszawa: Polski Komitet Normalizacyjny. 17 p. [In Polish: Fuels for motor vehicles - Diesel oils - Requirements and test methods. Warsaw: Polish Committee of Standardization].

14.PN-EN 14214+A2:2019-05. Ciekłe przetwory naftowe – Estry metylowe kwasów tłuszczowych (FAME) do użytku w silnikach samochodowych o zapłonie samoczynnym (Diesla) i zastosowań grzewczych – Wymagania i metody badań. Warszawa: Polski Komitet Normalizacyjny. 28 p. [In Polish: Liquid petroleum products - Fatty acid methyl esters (FAME) for use in compressionignition (diesel) automotive engines and heating applications - Requirements and test methods. Warsaw: Polish Committee of Standardization].

15.Abdelfattah, O.Y. & Allam, S. & Youssef, I. & et al. Influence of biodiesel from Egyptian used cooking oil on performance and emissions of small diesel engine. 2017. Journal of KONES. Vol. 24 No. 1. P. 7-22.

16.Karmakar, A. & Karmakar, S. & Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology. 2017. Vol. 101. No. 19. P. 7201-7210.

17.Maawa, W.N. & Mamat, R. & Najafi, G. & Masjuki, H.H. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews. 2015. Vol. 51. P. 585-602.

18.Klimiuk, E. & Pokój, T. & Pawłowska, M. Biopaliwa – Technologie dla zrównoważonego rozwoju. Warszawa: Wydawnictwo Naukowe PWN. 2012. 326 p. [In Polish: Biofuels - Technologies for sustainable development. Warsaw: Polish Scientific Publishers PWN].

19.Lewandowski, W. & Ryms, M. Proekologiczne odnawialne źródła energii. Warszawa: Wydawnictwa Naukowo Techniczne. 2014. 432 p. [In Polish: Pro-ecological renewable energy sources. Warsaw: Scientific and Technical Publishing House].

20.Izdebski, W. & Jakubowski, Z. & Skudlarski, J. & et al. Stan i perspektywy produkcji rzepaku w Polsce i na Ukrainie w aspekcie produkcji biopaliw transportowych. Problemy Rolnictwa Światowego. 2014. Vol. 14. No. 2. P. 80-90. [In Polish: The condition and prospects of rapeseed production in Poland and Ukraine in terms of the production of transport biofuels. Problems of World Agriculture].

21.Naylor, R.L. & Higgins, M.M. The rise in global biodiesel production: Implications for food security. Global Food Security. 2018. Vol. 16. P. 75-84.

22.Van Duren, I. & Voinov, A. & Arodudu, O. et al. Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renewable Energy. 2015. Vol. 74. P. 49-59.

23.Panchuk, M. & Kryshtopa, S. & Sładkowski, A. & Panchuk, A. Environmental aspects of the production and use of biofuels in transport. In: Sładkowski, A. (ed.) Ecology in transport: problems and solutions. Lecture notes in networks and systems 124. Cham: Springer Nature Switzerland AG. 2020. P. 115-168.

24.Borychowski, M. Produkcja i zużycie biopaliw płynnych w Polsce i na świecie - szanse, zagrożenia, kontrowersje. Roczniki Ekonomiczne Kujawsko-Pomorskiej Szkoły Wyższej w Bydgoszczy. 2012.Vol. 5. P. 39-59. [In Polish: Production and consumption of liquid biofuels in Poland and in the world - opportunities, threats, controversies. Economic Yearbooks of the Kujawy and Pomorze University in Bydgoszcz].

25.BP Statistical Review of World Energy June 2017. Available at: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/bp-statistical-review-ofworld-energy-2017-full-report.pdf.

26.Wysokość narodowych celów wskaźnikowych ustalona na lata 2017-2020. Available at: https://www.ure.gov.pl/pl/urzad/informacje-ogolne/aktualnosci/7017,Wysokosc-NarodowychCelow-Wskaznikowych-ustalona-na-lata-2017-2020.html. [In Polish: The level of the national indicator targets established for the years 2017-2020].

27. Selvam, P.D.J. & Vadivel, K. Performance and emission analysis of DI diesel engine fuelled with methyl esters of beef tallow and diesel blends. Procedia Engineering. 2012. Vol. 38. P. 342-358.

28.Lin, C.Y. & Li, R.J. Engine performance and emission characteristics of marine fishoil biodiesel produced from the discarded parts of marine fish. Fuel Processing Technology. 2009. Vol. 90. No. 7-8. P.883-888.

29.Koszałka, G. & Hunicz, J. & Kordos, P. Comperative analysis of emision from engine fuelled with diesel and bio-diesel. Journal of KONES. 2009. Vol. 16. No. 3. P. 165-171.

30.Behçet, R. & Oktay, H. & Çakmak A. at al. Comparison of exhaust emissions of biodiesel-diesel fuel blends produced from animal fats. Renewable and Sustainable Energy Reviews. 2015. Vol. 46. P. 157-165.

31.Barrios, C.C. & Domínguez-Sáez, A. & Martín, C. & Álvarez, P. Effects of animal fat based biodiesel on a TDI diesel engine performance, combustion characteristics and particle number and size distribution emissions. Fuel. 2014. Vol. 117(A). P. 618-623.

32.Alptekin, E. & Canakci, M. & Ozsezen, A.N. & Turkcan, A. & Sanli H. Using waste animal fat based biodiesels–bioethanol–diesel fuel blends in a DI diesel engine. Fuel. 2015. Vol. 157. P. 245-254.

33.Sakthivel, G. & Nagarajan, G. & Ilangkumaran, M. et al. Comparative analysis of performance, emission and combustion parameters of diesel engine fuelled with ethyl ester of fish oil and its diesel blends. Fuel. 2014. Vol. 132. P. 116-124.

34.Stapersma, D. Diesel engines volume 4 emissions and heat transfer. Delf: Delft University of Technology. 2010. 242 p.

35.Mattarelli, E. & Rinaldini, C.A. & Savioli, T. Combustion analysis of a diesel engine running on different biodiesel blends. Energies. 2015. Vol. 8. P. 3047-3057.

36.Mikulski, M. & Wierzbicki, S. & Ambrosewicz-Walacik, M. et al. Combustion of Gaseous Alternative Fuels in Compression Ignition Engines. In: Alternative Fuels, Technical and Environmental Conditions. Rijeka: OpenTech. 2016. 230 p.

37.Duda, K. & Wierzbicki, S. & Śmieja, M & et al. Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel. 2018. Vol. 212. P. 202-222.

38.Duda, K. & Wierzbicki, S. & Mikulski, M. An experimental analysis of performance and exhaust emissions of a CRDI diesel engine operating on mixtures containing mineral and renewable components. Combustion Engines. 2019. Vol. 58. No. 4. P. 27-31.

39.Talebian-Kiakalaieh, A. & Amin, N.A.S. & Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy. 2013. Vol. 104. P. 683-710.

40.WELL-TO-TANK Report version 4.a: JEC WELL-TO-WHEELS ANALYSIS. Available at: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/well-tankreport-version-4a-jec-well-wheels-analysis.