RESEARCH OF ROTARY PISTON ENGINE USE IN TRANSPORT POWER PLANTS

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

0
Reader(s)
0
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 16 , ISSUE 1 (March 2021) > List of articles

RESEARCH OF ROTARY PISTON ENGINE USE IN TRANSPORT POWER PLANTS

Oleksandr MYTROFANOV / Arkadii PROSKURIN * / Andrii POZNANSKYI

Keywords : rotary piston air engine; hybrid transport power plant; compressed air; external speed characteristic; car power balance; dynamic characteristic of a car

Citation Information : Transport Problems. Volume 16, Issue 1, Pages 165-178, DOI: https://doi.org/10.21307/tp-2021-014

License : (CC BY 4.0)

Received Date : 09-October-2019 / Accepted: 26-February-2021 / Published Online: 15-March-2021

ARTICLE

ABSTRACT

A schematic diagram of a transport hybrid power plant using a new design RPE-4.4/1.75 rotary piston air engine is proposed. Its external speed characteristic is determined, according to which the maximum engine power is 8.75 kW at 850 rpm and the maximum torque is 127.54 N∙m at 400 rpm. For various gears and speeds, all the components of the power balance were determined and the dynamic characteristic of the hybrid car was obtained when operated on an air engine. According to the dependences of the power balance, the total traction force from the rotary piston air engine on the driving wheels is 5 kN. The performance of acceleration of a hybrid car while working on an air engine is estimated, namely, the dependences of acceleration, time, and acceleration path are obtained. In urban traffic, the required time to accelerate the car to a speed of 60 km/h is 15.2 s and the path is 173 m. The possible drive range of the hybrid car on compressed air without additional recharging is analyzed. On one cylinder with compressed air with a volume of 100 liters, an initial pressure of 35 MPa, and a final pressure of 2 MPa, the hybrid car can travel about 26 km.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Electric surge; Carmakers’ car plans across Europe 2019-2025. Transport & Environment. European Federation for Transport and Environment AISBL. 2019. 39 p.

2. Hooftman, N. & Oliveira, L. & Messagie, M. & Coosemans, T. & Mierlo, J.V. Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies. 2016. Vol. 9. No. 84. P. 1-24.

3. Crisostomi, E. & Shorten, R. & Stüdli, S. & Wirth, F. Electrical and Plug-in Hybrid Vehicle Networls: Optimization and Control. Taylor & Francis Group. 2018. 261 p.

4. Ehsani, M. & Gao, Y. & Longo, S. & Ebrahimi, K. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. Third Edition. Taylor & Francis Group. 2018. 419 p.

5. German, J. Hybrid Vehicles Technology Development and Cost Reduction. Technical Brief. 2015. No. 1. A series. July. P. 1-18.

6. Капустин, А.А. & Раков, В.А. Гибридные автомобили. Вологда: ВоГУ. 2016. 96 p. [In Russian: Kapustin, A.A. & Rakov, V.A. Hybrid cars: study guide. Vologda: VoSU].

7. Петров, Р.Л. На сколько реальны заявленные показатели расхода топлива и эмиссии CO2 для гибридных автомобилей. Журнал автомобильных инженеров. 2015. No. 2 (31). P. 45-50. [In Russian: Petrov, R.L. How realistic are the declared fuel consumption and CO2 emissions for hybrid cars. Journal of Automotive Engineers].

8. Бажинов, О.В. & Смирнов, О.П. & Сєріков, С.А. & ін. Гібридні автомобілі. Харків. Крок. 2008. 327 p. [In Ukrainian: Bazhinov, O.V & Smirnov, O.P & Serikov, S.A. & et al. Hybrid cars. Kharkiv. Krok].

9. Селифонов, В.В. & Карпухин, К.Е. & Филонов, А.И. и др. Гибридные автомобили – решение экологической проблемы автомобильного транспорта. Известия МГТУ «МАМИ». 2007. No. 2. P. 30-44. [In Russian: Selifonov, V.V. & Karpukhin, K.E. & Filonov, A.I. & et al. Hybrid cars – a solution to the environmental problem of road transport. News MSTU "MAMI"].

10.Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A. A review of compressed-air hybrid technology in vehicle system. Renew Sustain Energy Rev. 2017. No. 67. P. 935-953.

11.Radhika, S. & Swapna, D. & Manikanta, P. & Sunain, S.K. Design of a compressed air vehicle. Journal of Refrigeration, Air Conditioning, Heating and Ventilation. 2016. No. 1(3). P. 1-6.

12.Robert, R. & Sharath Machaiah, A.M. & Roy, J.K. & Sunny, S. & Chennakeshava, R. A review on novelty of design and development of pneumatic bicycle. Journal of Aerospace Engineering & Technology. 2018. No. 8(1). P. 1-4.

13.Nabil, T. Investigation and implementation of compressed air powered motorbike engines. Engineering Reports. 2019. No. 1:e12034. P. 1-13. Available at: https://doi.org/10.1002/eng2.12034.

14.Allam, S. & Zakaria, M. Experimental Investigation of Compressed Air Engine Performance. International Journal of Engineering Inventions. 2018. Vol. 7. No. 1. Ver. II. P. 13-20.

15.Pramod, K.J. Air powered engine. International Journal of Mechanical Engineering and Technology (IJMET). 2016. Vol. 7. No. 2. P. 66-72.

16.Singh, V. Compressed Air Engine. International Journal of Scientific and Research Publications. 2017. Vol. 7. No. 7. P. 403-412.

17.Kumar, Sh. & Pradhan, P.K. & Khan, Z.H. & Kumar, B.A. & Chaithanya, M. Design and Developing of Compressed Air Engine. International Research Journal of Engineering and Technology (IRJET). 2017. Vol. 04. No. 05. P. 1468-1474.

18.Chinglenthoiba, C. & Balaji, V. & Abbas, B. & Kumar, A. M. System design and mechanism of a compressed air engine. International Journal of Mechanical Dynamics & Analysis. 2016. No. 2(2). P. 1-5.

19.Akif, K. M. Transformation of a piston engine into a compressed air engine with rotary valve. SSRG International Journal of Mechanical Engineering. 2016. No. 3(11). P. 1-5.

20.Korucu, S. & Samtas, G. & Soy, G. Design and experimental investigation of pneumatic movement mechanism supported by mechanic cam and crank shaft. TEM Journal. 2015. No. 4(1). P. 22-34.

21.Kumar, N.P. & Shankar, N.V.S. & Prasad Reddy, V.S.S.N. Performance of a compressed air engine. International Journal for Research in Applied Science & Engineering Technology (IJRASET). 2018. No. 6. P. 2456-2466.

22.Yu, Q.H. & Cai, M.L. Experimental analysis of a compressed air engine. Journal of Flow Control, Measurement & Visualization. 2015. No. 3. P. 144-153.

23.Radhakrishna, L. & Gopikrishna, N. Prefabricating and testing of air driven engine. International Journal of Mechanical Engineering and Technology. 2017. No. 8(11). P. 238-251.

24.UA 120489. Поршнева машина. Митрофанов, О.С. & Шабалін, Ю.В. & Бірюк, Т.Ф. & Єфеніна, Л.О. Publ. 10.12.2019. 17 p. [In Ukrainian: Piston machine. Mitrofanov, O.S & Shabalin, Y.V. & Biryuk, T.F. & Efenina, L.O.].

25.Mytrofanov, O. & Proskurin, A. & Poznanskyi, A. Determining the effective indicators of a rotarypiston motor operation. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 5/8(107). Р. 80-85.

26.Mytrofanov, O. & Proskurin, A. Determination of change of compressed air temperature when operating a rotary piston engine. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 6/8(108). Р. 25-31.

27.Thipse, S.S. Compressed Air Car. Special Feature: Air Pollution Control Technologies. Engine Development Laboratory. Automotive Research. Association of India. 2008. P. 33-37.

28.An engine which uses air as fuel: Tata Motors and technology inventor. MDI of France. signagreement. Available at: https://en.wikipedia.org/wiki/Compressed_air_car.

29.MDI City Flow Air. Available at: http://www.mdi.lu/english/2014%20aircity-eng.php.

30.Motor Development International. Archived from the original «others». Retrieved. Available at: http://www.sciencedirect.com/ science/ journal/ 00039993.

31.MDI’s air engine technology tested on Tata Motors vehicles. Available at: http://www.tatamotors.com/press/mdis-airengine-technology-tested-on-tata-motors-vehicles/.

32.Tata Motors enters second phase of air-car development Gizmag. Available at: http://newatlas.com/tata-motors-air-carmdi/22447/.

33.Филькин, Н.М. & Шаихов, Р.Ф. & Буянов, И.П. Теория транспортных и транспортнотехнологических машин: учебное пособие. Пермь: ФГБОУ ВО Пермская ГСХА. 2016. 230 p. [In Russian: Filkin, N.M. & Shaikhov, R.F. & Buyanov, I.P. Theory of transport and transporttechnological machines: study guide. Perm: FSBEI HE Perm State Agricultural Academy].

34.Нуждин, Р.В. Тяговый расчет автомобиля: метод. указания к курсовому проектированию по дисциплине «Конструкция и потребит. свойства автомобилей». Владимир: Изд-во ВлГУ. 2018. 36 p. [In Russian: Nuzhdin, R.V. Traction calculation of a car: guidelines for course design in the discipline "Design and consumer properties of cars". Vladimir: VlSU Publ. House].

35.Зенченко, В.А. & Ременцов, А.Н. & Павлов, А.В. & Сотсков, А.В. Оценка параметров окружающей среды и основных транспортных потоков, определяющих ситуацию на уличнодорожной сети. Москва. Современные наукоемкие технологии. 2012. No. 2. P. 52-59. [In Russian: Zenchenko, V.A. & Rementsov, A.N. & Pavlov, A.V. & Sotskov, A.V. Assessment of environmental parameters and main traffic flows that determine the situation on the road network. Moscow. Modern high technologies].

36.Клинковштейн, Г.И. & Афанасьев, М.Б. Организация дорожного движения. Москва: Транспорт. 2001. 247 p. [In Russian: Klinkovshtein, G.I. & Afanasiev, M.B. Traffic organization. Moscow: Transport].

EXTRA FILES

COMMENTS