Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X



VOLUME 16 , ISSUE 2 (June 2021) > List of articles


Andrey PUZAKOV *

Keywords : power supply system of vehicles; battery; automotive alternator; electric power balance

Citation Information : Transport Problems. Volume 16, Issue 2, Pages 113-120, DOI:

License : (CC BY 4.0)

Received Date : 11-January-2020 / Accepted: 10-May-2021 / Published Online: 24-June-2021



Increase in consumer power with the simultaneous reduction in the time and driving speed of personal automobiles results in systematic discharge of the batteries due to electric power balance inefficiency. The calculation methods for the evaluation of the electric power balance are inefficient, as a number of random factors (demand for electric power, driving speed, air temperature, technical condition of the units, etc.) influence the process of electric power generation, storage and consumption. The instrumental method for evaluation of the electric power balance efficiency assumes that the driver is informed about the battery charge condition prior to combustion engine startup, operational evaluation of the charge state change is performed during automobile driving and the driver is warned about critical reduction of charge state (including the forecast of its change for the period of the parking of the automobile in winter).

Content not available PDF Share



1. Захаров, Н.С. & Сапоженков, Н.О. Методика корректирования периодичности заряда автомобильных аккумуляторных батарей в зимний период. Тюмень: Тюменский индустриальный университет. 2018. 156 p. [In Russian: Zakharov, N.S. & Sapozhenkov, N.O. A technique for correcting the periodicity of charging automobile batteries in winter. Tyumen: Tyumen Industrial University].

2. Adamiec, M. & Dziubiński, M. & Siemionek, E. Diagnostics methods in condition assessment of automotive starting battery. Autobusy, Technika, Eksploatacja, Systemy Transportowe. 2017. Vol. 10. P. 677-681.

3. OST 37.003.034-77. Баланс электроэнергии автомобилей и автобусов. Метод расчета, критерии оценки [In Russian: Electric Power Balance of Automobiles and Buses. Calculation Method, Evaluation Criteria].

4. Фещенко, А.И. & Феофанов, С.А. & Феофанова, Л.С. Расчет баланса электроэнергии на автомобиле. Москва: Московский автомобильно-дорожный институт. 2016. 48 р. [In Russian: Feshchenko, A.I. & Feofanov, S.A. & Feofanova, L.S. Calculation of the balance of electricity on a vehicle. Moscow: Moscow Automobile and Road Construction Institute].

5. Puzakov, A. Instrumental monitoring of the load of the automotive alternator during the movement of the vehicle. Journal of Physics: Conference Series. 2020. Vol. 1582. No 012072. DOI: 10.1088/1742-6596/1582/1/012072.

6. Mazlan, R.K. & Dan, R.M. & Zakaria, M.Z. & Hamid, A.H.A. Experimental study on the effect of alternator speed to the car charging system. MATEC Web of Conferences. 2017. Vol. 90. No 01076. P. 1-10.

7. Adamiec, M. & Dziubiński, M. & Siemionek, E. Research of the alternator on the stand-efficiency aspect. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 421. DOI: 10.1088/1757-899X/421/2/022001.

8. Whaley, D.L. & Soong, W. & Ertugrul, N. Extracting more power from the Lundell car alternator. Australasian Universities Power Engineering Conference (AUPEC). 26-29 September. 2004. Brisbane. Australia. P. 1-6.

9. Weibin, W. & Yue, F.T. & Junyi, D. & Pengbo, X. & Yunlin, F. & Tiansheng, H. & Jiewei, C. & Luoshi L. Integrated Durability of Automobile Alternator Test System Design Based on LabVIEW. The Open Mechanical Engineering Journal. 2014. Vol. 8. P. 839-845.

10.Diebig, M. & Frei, S. & Reitinger, H. & Ullrich, C. Modeling of the automotive power supply network with VHDL-AMS. IEEE Vehicle Power and Propulsion Conference. Lille. 2010. P. 1-6. DOI: 10.1109/VPPC.2010.5729074.

11.Gimeno, A. & Vivier, S. & Friedrich, G. Improvement of an automotive alternator using the Experimental Design Method. IEEE International Electric Machines and Drives Conference. Miami. FL. 2009. P. 1511-1514.

12.Dziubiński, M. & Drozd, A. & Adamiec, M. & Siemionek, E. Energy balance in motor vehicles. IOP Conference Series Materials Science and Engineering. 2016. Vol. 148. DOI: 012035. 10.1088/1757-899X/148/1/012035.

13.Soeiro, L.G. & Filho, B.J. & Sales, C.M. Comparison of Two Alternators Models for a Vehicle Electric Power Balance Simulation. Industrial Electronics Society IECON 2019 – 45th Annual Conference of the IEEE, 2019. Vol. 1. P. 2640-2645.

14.Capano, G. & Mozzone, M. & Kar, N.C. Study of the electric power balance in a vehicle for the choice of the battery. 2013 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit, USA. 2013. P. 1-6. DOI: 10.1109/ITEC.2013.6573476.

15.Debelov, V. & Dzhodzhua, O. & Sednev, K. & Endachev, D. Charging balance management system modeling and implementation in intelligent vehicle with combined power system. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 819. DOI: 012037. 10.1088/1757-899X/819/1/012037.

16.Nagashima, N. & Nishimura, R. & Ochiai, R. & Fujita, G. & Fukuda, T. Construction of HighlyAccurate Simulation Model in Automobile's Power System. 7th WSEAS International Conference on Electric Power System,High Voltages,Electric Machines. 2007.

17.Puzakov, A.V. Operational Monitoring Concept of the Vehicle Power Supply System. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Sochi. Russia. 2020. P. 1-5. DOI: 10.1109/ICIEAM48468.2020.9112079.

18.Parkash, V. & Kumar, D. & Kumar, Ch. & Rajoria, R. Failure Mode and Effect Analysis of Automotive Charging System. International journal of software & hardware research in engineering. 2013. Vol. 3. P. 53-57.

19.Uçar, M. & Bayir, R. & Özer, M. Real time detection of alternator failures using intelligent control systems. International Conference on Electrical and Electronics Engineering (ELECO). Bursa. 2009. P. II-380-II-384.

20.Du, X. & Zhang, Y. Development of Robust Fault Signatures for Battery and Starter Failure Prognosis. Annual Conference of the PHM Society. 2018. Vol. 10(1). DOI:

21.Pattipati, B. & Pattipati, K. & Christophersen, J. & Namburu, S. & Prokhorov, D. & Qiao, L. Automotive battery management systems. AUTOTESTCON (Proceedings). 2008. P. 581-586. DOI: 10.1109/AUTEST.2008.4662684.

22.Lee, W. & Choi, D. & Sunwoo, M. Modelling and simulation of vehicle electric power system. Journal of Power Sources. 2002. Vol. 109. P. 58-66. DOI: 10.1016/S0378-7753(02)00033-2.

23.Yang, D. & Kong, W. & Li, B. & Lian, X. Intelligent vehicle electrical power supply system with central coordinated protection. Chin. J. Mech. Eng. 2016. Vol. 29. P. 781-791. DOI: 10.3901/CJME.2016.0401.044.

24.Dziubiński, M. Registration of the diagnostic signals of the starting system for selected faults. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 421. No 022006. DOI: 10.1088/1757-899X/421/2/022006.

25.Shchegolev, I. & Starkov, E. & Hripchenko, M. System of "Start-stop" and its effectiveness. Actual directions of scientific researches of the XXI century: theory and practice. 2015. Vol. 3. P. 153- 155. DOI: 10.12737/13911.

26.Zhong, Q. & Qin, H. & Xu, R. Study on the Start-Stop System Control Strategy under Different Driving Cycle, 2018 IEEE 14th International Conference on Control and Automation (ICCA), Anchorage. AK. 2018. P. 223-228. DOI: 10.1109/ICCA.2018.8444176.