Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X





Volume / Issue / page

Related articles

VOLUME 16 , ISSUE 2 (June 2021) > List of articles


Wojciech SZYMALSKI *

Keywords : energy intensity; transport modes; Warsaw; CO2 emission intensity

Citation Information : Transport Problems. Volume 16, Issue 2, Pages 131-140, DOI:

License : (CC BY 4.0)

Received Date : 22-November-2019 / Accepted: 12-May-2021 / Published Online: 24-June-2021



This article presents the results of the calculation of energy and CO2 emission intensities in relation to the unit of passenger transport activity for various modes of public transport, cars and motorcycles for Warsaw in 2015. The results are compared with similar information from other countries and regions that comes from international comparisons and are summarized in this article. The results for Warsaw show that intensity indicators are comparable to other cities, with noteworthy lowintensity indicators for city public transport buses. An important achievement of the author is calculation of the energy and CO2 emission intensities for various modes of transport in Polish conditions and for a single city: Warsaw.

Content not available PDF Share



1. Amici della Terra. I costi ambientali e sociali della mobilità in Italia. V. rapporto. Rome: Ferrovie dello Stato. 2005 [In Italian: Friends of the Earth, Environmental and social costs of mobility in Italy. Report V. Rome: State Railways. 2005].

2. Boehler-Baedeker, S. & Hueging, H. Urban Transport and Energy Efficiency, Module 5h, Sustainable Transport: A Sourcebook for Policy-makers in Developing Countries. Bonn: Deutsche Gesellschaft fuer Internatinal Zusammenarbeit (GIZ) GmbH. P. 11. 2012. Available at:

3. Chester, V.M. Life-cycle Environmental Inventory of Passenger Transportation in the United States. Berkeley: University of California. Institute for Transportation Studies. 2008. PHD Thesis. Available at:

4. Dragan, A. & Mostowski, J. Prawo jazdy roweru. Wiedza i Życie. 2002. Vol. 6. Warsaw: Pruszyński i Spółka [In Polish: Law for a movement of a bike. Knowledge and Life].

5. Gonzales, M. Los medios de transporte en la ciudad. Un analisis comparative. Madrid: Ecologistas en Accion. 2007. [In Spanish: Modes of transport in the city. Comparative analysis]. Available at:

6. GUS. Ankietowe badanie mobilności transportowej ludności na poziomie lokalnym. Warsaw: Główny Urząd Statystyczny. 2018. [In Polish: Questionaire research in mobility of people on the local level]. Available at:,4,1.html.

7. EEA. Energy efficiency and energy consumption in the transport sector. 2011. Copenhagen. European Environmental Agency. Available at:

8. EEA. Specific CO2 emissions per passenger-km and per mode of transport in Europe. Copenhagen. European Environmental Agency. 2017. Available at:

9. EEA. Indicator 20: Energy and CO2 intensity. Copenhagen. European Environmental Agency. 2020. Available at:

10. Estevan, A. Modelos de transporte y emissions de CO2 en Espana. Revista de Economia Critica. 2005. Vol. 4. P. 67-87. [In Spain: Transport models and CO2 emissions in Spain. Critical Economics Journal]. Available at:

11.IEA. Energy intensity of passenger transport modes. 2018. Paris: International Energy Agency. Available at:

12.IEA. GHG intensity of passenger transport modes. 2019. Paris: International Energy Agency. Available at:

13.Kalenoja, H. Energy consumption and environmental effects of passenger transport modes – a life cycle study on passenger transport modes – English Summary. Tampere: University of Technology. 1996. PHD Thesis. Available at:

14. Kostelecka, A. (ed.). Warszawskie Badanie Ruchu 2015 wraz z opracowaniem modelu ruchu. Raport z etapu III. Sopot, Cracow, Warsaw: PBS, Via Vistula, Cracow University of Technology. 2015. Available at: [In Polish: Warsaw Transport Resarch 2015 with preparation of the traffic model. Report from III stage].

15.Lee, D.S. et. all. 2020. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment. 2021. No 117834. DOI:

16.Lenzen, M. Total Requirements of Energy and Greenhouse Gases for Australian Transport. Transport Research Part D: Transport and Environment. 1999. Vol. 4. P. 265-290. DOI:

17.Moriarty, P. & Wang, S.J. Eco-efficiency indicators for urban transport. Journal for Sustainable Development of Energy, Water and Environment Systems. 2015. Vol. 3(2). P. 183-195. DOI:

18.Merchan, A.L. & Belboom, S. & Leonard, A. Life cycle assessment of freight transport in Belgium. Conference: BIVEC-GIBET Transport Research Days 2017, Liège. Proceedings of the BIVEC-GIBET Transport Research Days 2017. Available at: t_in_Belgium.

19. Mraihi, R. Transport Intensity and Energy Efficiency: Analysis of Policy Implications of Coupling and Decoupling. Energy Efficiency - The Innovative Ways for Smart Energy, the Future Towards Modern Utilities. Moustafa Eissa, IntechOpen. DOI: 10.5772/50808. 2012. Available at:

20. Our World in Data. Carbon Footprint of travel per kilometer 2018. Oxford: Global Change Data Lab. 2019. Available at:®ion=World.

21. Rodrigue, J-P. The Geography of Transport Systems. Fifth edition. New York: Routledge. 2020. 230 p. Available at: and

22. SNCF. Information sur la quantite de gaz a effet de serre emise a l’occasion d’un presentation de transport – metodologie generale. 2018. [In French: Information on the amount of greenhouse gases emitted during a transport presentation – general methodology]. Paris: SNCF – Direction du development durable. Available at: ologie_generale.pdf [In French: Information on the quantity of gas emissions for transport – general methodology].

23. Szymalski, W. Perspektywa ograniczenia emisji gazów cieplarnianych z transportu w metropolii – przypadek Warszawy. In: Gajewski, J. & Paprocki, W. Polityka klimatyczna i jej realizacja w pierwszej połowie XXI wieku. P. 158-177. Sopot: Centrum Myśli Strategicznych. 2020. [In Polish: Perspective for reduction of greenhouse gases emission from transport – case of Warsaw. Climate policy and its implementation in the first half of XXI century]. Available at:

24.Toledo, A.L.L. & La Rovere, E.L. Urban Mobility and Greenhouse Gas Emissions: Status, Public Policies, and Scenarios in a Developing Economy City. Natal, Brazil. Sustainability. 2018. Vol. 10. Available at:

25.UBA. Vergleich der durchschnittlichen Emissionen einzelner Verkehrsmittel im Personenverkehr. Dessau-Rossblau: Umweltbundesamt. 2018. [In German: Comparison of mean emissions from personal transport modes]. Available at:

26.UK Department for Bussiness, Energy & Industrial Strategy, 2020. Greenhouse gas reporting: conversion factors 2019. Available at:

27.U.S. Department of Transportation. Bureau of Transportation Statistics. Energy Intensity of Passenger Modes. Washington: Bureau of Transportation Statistics. P. 1962-2020. Available at:

28.Van Essen, H. & Bello, O. & Dings, J. & van den Brink, R. To shift or not to shift, that’s the question - The environmental performance of freight and passenger transport modes in the light of policy making. Delft: CE Delft. 2003. P. 29. Available at:

29.Veneri, P. Urban polycentricity and the social costs of commuting. Growth and Change. 2010. Vol. 41. No. 3. P. 403-429. Available at: of_commuting.

30.Zambrini, M. Il peso sel settore dei transporti sui cambiamenti climatici e le prospettive di contenimento delle emissioni: gli scenari internazionali ed europei. Milano: Ambiente Italia. 2016. P. 21. [In Italian: The impact of the transport sector on climate change and the prospects for limiting emissions: international and European scenarios]. Available at:

31.ZDM. Informator statystyczny nr IV – dodatek roczny 2015. Warsaw: Zarząd Dróg Miejskich w Warszawie. 2016. P. 19. [In Polish: Statistical information no. IV – yearly statistics 2015. Warsaw: Warsaw Public Transport Authority]. Available at: