IMPROVING THE EFFICIENCY OF VEHICLE OPERATION AND ITS ENVIRONMENTAL FRIENDLINESS WITHIN THE CONTROLLED CROSSINGS

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

7
Reader(s)
7
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 16 , ISSUE 3 (September 2021) > List of articles

IMPROVING THE EFFICIENCY OF VEHICLE OPERATION AND ITS ENVIRONMENTAL FRIENDLINESS WITHIN THE CONTROLLED CROSSINGS

Serhii TURPAK / Vjacheslav TRUSHEVSKY / Olexiy KUZ’KIN / Sergey GRITCAY / Igor TARAN *

Keywords : traffic signalization; crossing; traffic delays; energy efficiency

Citation Information : Transport Problems. Volume 16, Issue 3, Pages 119-130, DOI: https://doi.org/10.21307/tp-2021-046

License : (CC BY 4.0)

Received Date : 29-March-2020 / Accepted: 10-September-2021 / Published Online: 30-September-2021

ARTICLE

ABSTRACT

This paper is devoted to improving both the efficiency and the environmental friendliness of road vehicles during their operations through optimization of traffic phase duration within the controlled crossings. A novel criterion to optimize traffic phase duration within a controlled crossing is proposed. The proposed criterion supposes the minimal total delays of all road users waiting for a permissive traffic signal at the crossing and takes into consideration both pedestrian density and the number of passengers in vehicles. The calculation technique for the traffic phase was proposed, according to which delays of all road users were optimized, helping to improve the efficiency of vehicle operation within crossings. Based on the method, a technique to control traffic within crossings is developed and tested. Comparative analysis confirmed the decrease in unproductive delays of vehicles within the controlled crossings by contrast with the traditional approach. The technique makes it possible to reduce the delay of road users by 15-20% depending upon road crowding, the number of pedestrians, and passengers. Owing to the decreased period of waiting for a permissive traffic signal, the energy efficiency of public transport increases.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. World Health Organization. Global status report on road safety 2015. World Health Organization, 2015.

2. Трушевський, В. & Грицай, С. & Никифоровський, Д. Мінімізація затримок учасників дорожнього руху на регульованих пішохідних переходах. Східно-Європейський журнал передових технологій. 2014. Vol. 5(3). P. 25-29. [In Ukrainian: Trushevskij, V. & Gricaj, S. & Nikiforovskij, D. Minimization of delays of road users on regulated crosswalks. EasternEuropean journal of enterprise technologies].

3. Рахмангулов, А. & Ломакина, М. Выбор направления совершенствования систем светофорного регулирования транспортных потоков в городах. Современные проблемы транспортного комплекса России. 2017. Vol. 7. No. 1. P. 27-34. [In Russian: Rakhmangulov, A. & Lamakina, M. Selecting the direction of improving the traffic light system of urban traffic flows management. Sovremennye problemy transportnogo kompleksa Rossii].

4. Marisamynathan, S. & Vedagiri, P. Modeling pedestrian delay at signalized intersection crosswalks under mixed traffic condition. Procedia-Social and Behavioral Sciences. 2013. Vol. 104. P. 708-717. DOI: 10.1016/j.sbspro.2013.11.165.

5. Guo, R. & Lu, X. Delays for both pedestrians classified and vehicles at a signalized crosswalk. Journal of Systems Science and Complexity. 2016. Vol. 29. No. 1. P. 202-218.

6. Dommes, A. Red light violations by adult pedestrians and other safety-related behaviors at signalized crosswalks. Accident Analysis & Prevention. 2015. Vol. 80. P. 67-75.

7. Brosseau, M. The impact of waiting time and other factors on dangerous pedestrian crossings and violations at signalized intersections: A case study in Montreal. Transportation research part F: traffic psychology and behaviour. 2013. Vol. 21. P. 159-172. DOI: 10.1016/j.trf.2013.09.010.

8. Marisamynathan, S. & Vedagiri, P. A new approach to estimate pedestrian delay at signalized intersections. Transport. 2018. Vol. 33. No. 1. P. 249-259.

9. Yu, C. Optimization of vehicle and pedestrian signals at isolated intersections. Transportation Research Part B: Methodological. 2017. Vol. 98. P. 135-153. DOI: 10.1016/j.trb.2016.12.015.

10. Mishra, S. Evaluating the Impacts of Existing Priority and Developing a Passenger Based Transit Signal Priority. MS Thesis. 2016.

11. Wang, L. & Zhou, Y. Optimization of Intersection Phase and Signal Timing. Journal of Xi'an Technological University. 2012. Vol. 12. P. 16.

12. Ren-Yong, G. & Xi, G. Interactions between intersecting pedestrian and vehicle flows on roads. Chinese Physics Letters. 2011. Vol. 28(11). P. 118903.

13. Pan, Q. & Zhu, Y. Delay analysis of the vehicle at signalized intersection. Journal of Systems Science and Mathematical Sciences. 2009. Vol. 29(6). P. 728-734.

14. Chen, P. & Zheng, F. & Lu, G. & Wang, Y. Comparison of variability of individual vehicle delay and average control delay at signalized intersections. Transportation Research Record. 2016. Vol. 2553(1). P. 128-137.

15. Tao, Y. & Wei, Y. & Gao, Q. & Dong, L. Pedestrian-vehicle interference at a signalized crossing based on detailed microscopic traffic flow models. Acta Physica Sinica. 2019. Vol. 68(24). P. 240505.

16. Zhang, Y. & Mamun, S. & Ivan, J. & Ravishanker, N. & Haque, K. Safety effects of exclusive and concurrent signal phasing for pedestrian crossing. Accident Analysis & Prevention. 2015. Vol. 83. P. 26-36.

17. Forde, A. & Janice, D. Pedestrian walking speed at un-signalized midblock crosswalk and its impact on urban street segment performance. Journal of Traffic and Transportation Engineering (English Edition). 2020. DOI: https://doi.org/10.1016/j.jtte.2019.03.007.

18. Yu, C. & Ma, W. & Yang, X. Integrated optimization of location and signal timings for midblock pedestrian crosswalk. Journal of Advanced Transportation. 2016. Vol. 50(4). P. 552-569.

19. Hitchcock, O. & Gayah, V. Methods to reduce dimensionality and identify candidate solutions in multi-objective signal timing problems. Transportation Research Part C: Emerging Technologies. 2018. Vol. 96. P. 398-414.

20. Ma, W. & Liao, D. & Liu, Y. & Lo, H. Optimization of pedestrian phase patterns and signal timings for isolated intersection. Transportation Research Part C: Emerging Technologies. 2015. Vol. 58. P. 502-514.

21. Yang, Z. & Benekohal R. Use of genetic algorithm for phase optimization at intersections with minimization of vehicle and pedestrian delays. Transportation research record. 2011. Vol. 2264. No. 1. P. 54-64.

22. Трушевський, В. & Грицай, С. Особливості корекції елементів циклу світлофорного регулювання з метою гарантування безпеки руху пішоходів. Автошляховик України. 2014. Vol. 5. P. 20-22. [In Ukrainian: Trushevsky, V. & Gritsaj, S. Features of cell traffic light cycle correction to guarantee the pedestrians’ safety. A Scientific and Industrial Journal the Avtoshliakhovyk Ukrayiny].

23. Zhihui, L. & Qian, C. & Yonghua, Z. & Pengfei, T. & Rui, Z. Krill herd algorithm for signal optimization of cooperative control with traffic supply and demand. IEEE Access. 2019. Vol. 7. P. 10776-10786.

24. Qadri, S.S.S.M. & Gökçe, M.A. & Öner, E. State-of-art review of traffic signal control methods: challenges and opportunities. European transport research review. 2020. Vol. 12(1). P. 1-23.

25. Tana, M.K. & Chuo, H.S.E. & Lim, K.G. & Chin, R.K.Y. & Yang, S.S. & Teo, K.T.K. A comparison study of deterministic and metaheuristic algorithms for stochastic traffic flow optimization under saturated condition. Ictact journal on soft computing. 2020. Vol. 10. No. 3. P. 2117-2123.

26. Gao, Y. & Qu, Z. & Jiang, J. & Song, X. & Xia, Y. Mixed traffic flow signal timing optimization method considering e-bike expansion influence. Journal of transportation engineering. Part A: Systems. 2021. Vol. 147(2). DOI: https://doi.org/10.1061/JTEPBS.0000478.

27. Iryo-Asano, M. & Alhajyaseen, W. & Nakamura, H. Analysis and modeling of pedestrian crossing behavior during the pedestrian flashing green interval. IEEE Transactions on Intelligent Transportation Systems. 2015. Vol. 16. No. 2. P. 958-969.

28. Turpak, S. & Taran, I. & Fomin, O. & Tretiak, O. Logistic technology to deliver raw material for metallurgical production. Naukovyi visnyk Natsionalnoho hirnychoho universytetu. 2018. No. 1. P. 162-169.

29. Shramenko, N. Methodology for evaluation of synergy effect in terminal cargo delivery system. Actual Problems of Economics. 2016. Vol. 8(182). P. 439-444.

30. Sabraliev, N. & Abzhapbarova, A. & Nugymanova, G. & Taran, I. & Zhanbirov Zh. Modern aspects of modeling of transport routes in Kazakhstan. News of the National Academy of sciences of the Republic Kazahstan. 2019. Vol. 2(434). P. 62-68.

EXTRA FILES

COMMENTS